八年級數(shù)學(xué)下冊知識點總結(jié)
數(shù)學(xué)(mathematics或maths),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。下面是小編整理的關(guān)于八年級數(shù)學(xué)下冊知識點總結(jié),歡迎大家參考!
八年級數(shù)學(xué)下冊知識點總結(jié) 1
第十六章 分式
一.知識框架
二.知識概念
1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意義的條件:分母不等于0
3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。
4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)
5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
6.分式的四則運(yùn)算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計算.用字母表示為:a/b±c/d=ad±cb/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b*d/c
7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.
8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
分式和分?jǐn)?shù)有著許多相似點。教師在講授本章內(nèi)容時,可以對比分?jǐn)?shù)的特點及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點在于分式方程解實際應(yīng)用問題。
第十七章 反比例函數(shù)
一.知識框架
二.知識概念
1.反比例函數(shù):形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k
2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小;
當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。
在學(xué)習(xí)反比例函數(shù)時,教師可讓學(xué)生對比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行對比性學(xué)習(xí)。在做題時,培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。
第十八章 勾股定理
一.知識框架
二 知識概念
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。
3.我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前提下,學(xué)會利用這個定理解決實際問題?梢酝ㄟ^自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受
第十九章 四邊形
一.知識框架
二.知識概念
1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
3.平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
5.直角三角形斜邊上的中線等于斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質(zhì): 矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
11.菱形的`判定定理:1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
12.S菱形=1/2×ab(a、b為兩條對角線)
13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
14.正方形的性質(zhì):四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
17.直角梯形的定義:有一個角是直角的梯形
18.等腰梯形的定義:兩腰相等的梯形。
19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過程中多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學(xué)時可以多鼓勵學(xué)生自己總結(jié)四邊形的特點,這樣有利于學(xué)生對知識的把握。
第二十章 數(shù)據(jù)的分析
一.知識框架
二.知識概念
1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。 權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。
2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
3. 眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
4. 極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。
本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學(xué)生的統(tǒng)計意識和數(shù)據(jù)處理的方法與能力。在教學(xué)過程中,以生活實例為主,讓學(xué)生體會到數(shù)據(jù)在生活中的重要性。
八年級數(shù)學(xué)下冊知識點總結(jié) 2
1)分式混合運(yùn)算法則:
分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);
乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡.
2)分式方程的增根問題
(1)增根的產(chǎn)生:分式方程本身隱含著分母不為0的條件,當(dāng)把分式方程轉(zhuǎn)化為整式方程后,方程中未知
數(shù)允許取值的范圍擴(kuò)大了,如果轉(zhuǎn)化后的整式方程的根恰好使原方程中分母的值為0,那么就會出現(xiàn)
不適合原方程的根---增根;
(2)驗根:因為解分式方程可能出現(xiàn)增根,所以解分式方程必須驗根.
列分式方程基本步驟
、賹-仔細(xì)審題,找出等量關(guān)系。
、谠O(shè)-合理設(shè)未知數(shù)。
、哿-根據(jù)等量關(guān)系列出方程(組)。
、芙-解出方程(組)。注意檢驗
⑤答-答題。
3)解分式方程的基本步驟
、湃シ帜,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)
⑵解整式方程,得到整式方程的解。
、菣z驗,把所得的整式方程的解代入最簡公分母中:
如果最簡公分母為0,則原方程無解,這個未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。
產(chǎn)生增根的條件是:①是得到的整式方程的解;②代入最簡公分母后值為0。
4)分式的基本性質(zhì):
分式的分子和分母都乘以(或除以)同一個不等于零的整式,分式的值不變。
即,(C≠0),其中A、B、C均為整式。分式的符號法則:一個分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變。
約分:分?jǐn)?shù)可以約分,分式與分?jǐn)?shù)類似,也可以約分,根據(jù)分式的基本性質(zhì)把一個分式的分子與分母的公因式約去,這種變形稱為分式的約分。
5)分式的約分步驟:
(1)如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去;
(2)分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。
6)分式的運(yùn)算:
1.分式的加減法法則:
(1)同分母的分式相加減,分母不變,把分子相加;
(2)異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進(jìn)行計算。
2.分式的乘除法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。
3.分式的混合運(yùn)算順序,先算乘方,再算乘除,最后算加減,有括號先算括號里面的。
4.對于分式化簡求值的題型要注意解題格式,要先化簡,再代人字母的值求值。
約分的方法和步驟包括:
(1)當(dāng)分子、分母是單項式時,公因式是相同因式的最低次冪與系數(shù)的公約數(shù)的積;
(2)當(dāng)分子、分母是多項式時,應(yīng)先將多項式分解因式,約去公因式。
7)通分:根據(jù)分式的`基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。
分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。
(1)當(dāng)幾個分式的分母是單項式時,各分式的最簡公分母是系數(shù)的最小公倍數(shù)、相同字母的次冪的所有不同字母的積;
(2)如果各分母都是多項式,應(yīng)先把各個分母按某一字母降冪或升冪排列,再分解因式,找出最簡公分母;
(3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;
(4)通分和約分是兩種截然不同的變形.約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。
8)注意:
(1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);
(2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。
(3)約分時,分子與分母不是乘積形式,不能約分.
3.求最簡公分母的方法是:
(1)將各個分母分解因式;
(2)找各分母系數(shù)的最小公倍數(shù);
(3)找出各分母中不同的因式,相同因式中取次數(shù)的,滿足(2)(3)的因式之積即為各分式的最簡公分母(求最簡公分母在分式的加減運(yùn)算和解分式方程時起非常重要的作用)。
運(yùn)算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(shù)(log,lg,ln,lb,lim),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
基本函數(shù)有哪些
正弦:sine余弦:cosine(簡寫cos)
正切:tangent(簡寫tan)
余切:cotangent(簡寫cot)
正割:secant(簡寫sec)
余割:cosecant(簡寫csc)
八年級數(shù)學(xué)下冊知識點總結(jié) 3
一、多邊形
1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。
4、多邊形的對角線:連結(jié)多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的'外角也就是與它有公共頂點的內(nèi)角的鄰補(bǔ)角。
9、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n-2)180°。
10、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。
說明:多邊形的外角和是一個常數(shù)(與邊數(shù)無關(guān)),利用它解決有關(guān)計算題比利用多邊形內(nèi)角和公式及對角線求法公式簡單。無論用哪個公式解決有關(guān)計算,都要與解方程聯(lián)系起來,掌握計算方法。
二、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。
三、凸四邊形
把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。
四、對角線
在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。
五、四邊形的不穩(wěn)定性
三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩(wěn)定性。但是四邊形的四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩(wěn)定性,它在生產(chǎn)、生活方面有著廣泛的應(yīng)用。
六、4邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
八年級數(shù)學(xué)下冊知識點總結(jié) 4
一、平行四邊形
定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
性質(zhì):
1、對邊:分別平行且相等;
2、對角:分別相等;
3、對角線:互相平分;
4、對稱性:中心對稱圖形。
判定定理
1、兩組對邊分別平行的四邊形是平行四邊形(定義);
2、兩組對邊分別相等的四邊形是平行四邊形;
3、一組對邊平行且相等的四邊形是平行四邊形;
4、兩組對角分別相等的四邊形是平行四邊形;
5、對角線互相平分的四邊形是平行四邊形。
三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
二、矩形
定義:有一個角是直角的平行四邊形。
性質(zhì):
1、具有平行四邊形的所有性質(zhì);
2、四個角都是直角;
3、對角線互相平分且相等;
4、對稱性:中心對稱圖形,軸對稱圖形。
判定定理:
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
三、約分與通分:
1.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分;
分式約分:將分子、分母中的公因式約去,叫做分式的約分。分式約分的根據(jù)是分式的基本性質(zhì),即分式的分子、分母都除以同一個不等于零的整式,分式的值不變。 約分的方法和步驟包括:
(1)當(dāng)分子、分母是單項式時,公因式是相同因式的最低次冪與系數(shù)的最大公約數(shù)的積;
(2)當(dāng)分子、分母是多項式時,應(yīng)先將多項式分解因式,約去公因式。
2.通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。 分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。
(1)當(dāng)幾個分式的分母是單項式時,各分式的`最簡公分母是系數(shù)的最小公倍數(shù)、相同字母的最高次冪的所有不同字母的積;
(2)如果各分母都是多項式,應(yīng)先把各個分母按某一字母降冪或升冪排列,再分解因式,找出最簡公分母;
(3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;
(4)通分和約分是兩種截然不同的變形.約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。 注意:
(1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);
(2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。
(3)約分時,分子與分母不是乘積形式,不能約分.
3.求最簡公分母的方法是:
(1)將各個分母分解因式;
(2)找各分母系數(shù)的最小公倍數(shù);
(3)找出各分母中不同的因式,相同因式中取次數(shù)最高的,滿足(2)(3)的因式之積即為各分式的最簡公分母(求最簡公分母在分式的加減運(yùn)算和解分式方程時起非常重要的作用)。
【八年級數(shù)學(xué)下冊知識點總結(jié)】相關(guān)文章:
八年級下冊數(shù)學(xué)知識點總結(jié)09-18
初二數(shù)學(xué)下冊知識點總結(jié)09-10
八年級下冊政治知識點總結(jié)10-30
八年級下冊英語知識點總結(jié)10-05
八年級下冊生物知識點總結(jié)08-19
八年級下冊數(shù)學(xué)第一章知識點總結(jié)05-05
八年級下冊英語書知識點總結(jié)07-18
八年級下冊語文知識點09-14