初一數(shù)學知識點
在我們平凡無奇的學生時代,不管我們學什么,都需要掌握一些知識點,知識點在教育實踐中,是指對某一個知識的泛稱。你知道哪些知識點是真正對我們有幫助的嗎?下面是小編收集整理的初一數(shù)學知識點,僅供參考,希望能夠幫助到大家。
初一數(shù)學知識點1
知識要點:
1.有理數(shù)加法的意義
(1)在小學我們學過,把兩個數(shù)合并成一個數(shù)的運算叫加法,數(shù)的范圍擴大到有理數(shù)后,有理數(shù)的加法所表示的意義仍然是這種運算.
(2)兩個有理數(shù)相加有以下幾種情況:
①兩個正數(shù)相加;②兩個負數(shù)相加;③異號兩數(shù)相加;④正數(shù)或負數(shù)或零與零相加.
(3)有理數(shù)的加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加.
異號兩數(shù)相加,絕對值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值.
一個數(shù)同0相加,仍得這個數(shù).
注意:①有理數(shù)的加法和小學學過的加法有很大的區(qū)別,小學學習的加法都是非負數(shù),不考慮符號,而有理數(shù)的加法涉及運算結(jié)果的符號;②有理數(shù)的加法在進行運算時,首先要判斷兩個加數(shù)的符號,是同號還是異號?是否有零?接下來確定用法則中的哪一條;③法則中,都是先強調(diào)符號,后計算絕對值,在應(yīng)用法則的過程中一定要“先算符號”,“再算絕對值”.
2.有理數(shù)加法的運算律
(1)加法交換律:a+b=b+a;
(2)加法結(jié)合律:(a+b)+c=a+(b+c).
根據(jù)有理數(shù)加法的運算律,進行有理數(shù)的運算時,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)加起來,利用有理數(shù)的加法運算律,可使運算簡便.
3.有理數(shù)減法的意義
(1)有理數(shù)的減法的意義與小學學過的減法的`意義相同.已知兩個加數(shù)的和與其中一個加數(shù),求另一個加數(shù)的運算,叫做減法.減法是加法的逆運算.
(2)有理數(shù)的減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
4.有理數(shù)的加減混合運算
對于加減混合運算,可以根據(jù)有理數(shù)的減法法則,將加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算。然后可以運用加法的交換律和結(jié)合律簡化運算。
三、重點難點:
重點:①有理數(shù)的加法法則和減法法則;②有理數(shù)加法的運算律.難點:①異號兩個有理數(shù)的加法法則;②將有理數(shù)的減法運算轉(zhuǎn)化為加法運算的過程.(這一過程中要同時改變兩個符號:一個是運算符號由“-”變?yōu)椤?”;另一個是減數(shù)的性質(zhì)符號,變?yōu)樵瓉淼南喾磾?shù))
初一數(shù)學知識點2
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的.因式。
、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
初一數(shù)學知識點3
關(guān)鍵詞:銜接階段;策略;平臺
一、問題的提出
初中和高中的銜接階段,學生普遍感覺高中數(shù)學太枯燥、抽象,有些章節(jié)如聽天書。在做習題時,又常常感到茫然一片,不知從何下手。學習上的困難甚至導致學生失去了學習數(shù)學的興趣,缺乏學習的動力。造成這種現(xiàn)象的原因是多方面的,其中一個主要的根源在初、高中數(shù)學教學的銜接問題上。初中的教學模式以及數(shù)學問題的難度和高中相比有一個明顯的差別。因此,使學生順利進行初中數(shù)學與高中數(shù)學的銜接,盡快適應(yīng)高中數(shù)學的學習,是非常必要的。
二、銜接階段學生容易碰到的問題
學生在完成初中階段數(shù)學學習后跨入高中數(shù)學學習的門檻,不僅他們自己表現(xiàn)出某些不適應(yīng),教師也普遍感覺到起始年級數(shù)學教學的諸多困難。很顯然,這些困難如果得不到及時、合理的解決,勢必會造成學生學習后續(xù)數(shù)學的更大問題。
1.初高中教學內(nèi)容和方法的差異
初中教學還屬于義務(wù)教育階段,以普及性教育為主,要照顧到大多數(shù)同學的認知程度。因此,初中數(shù)學教學內(nèi)容少,知識難度不大,教學進度較慢。對于某些重點、難點,教師可以有充裕的時間反復(fù)講解、多次演練,并讓學生通過機械模仿式的重復(fù)練習以達到熟能生巧的程度,結(jié)果造成“重知識,輕能力”,“重試卷(復(fù)習資料),輕書本”的不良傾向。這種封閉、被動的傳統(tǒng)教學方式嚴重束縛了學生思維的發(fā)展,影響了學生發(fā)現(xiàn)意識的形成,創(chuàng)新思維受到了扼制。
進入高中以來,數(shù)學教材內(nèi)涵豐富,教學要求高,教學進度快,知識信息廣泛。高一上學期要完成必修一、必修二兩本書:包括《函數(shù)》、《立體幾何》、《解析幾何初步》三個高中數(shù)學中的重要知識內(nèi)容,知識容量和習題的訓練量都非常大,學生常感吃不消。例如一開始就出現(xiàn)的集合、函數(shù)的概念,由初中較為具體的數(shù)學對象突然變成了抽象的數(shù)學對象,學生較難轉(zhuǎn)化思維。另外,題目難度加深,知識的重點和難點也不可能像初中那樣通過反復(fù)強調(diào)來排難釋疑。且高中教學往往通過設(shè)導、設(shè)問、設(shè)陷、設(shè)變啟發(fā)引導,開拓思路,然后由學生自己思考、去解答,比較注意知識的'發(fā)生過程,側(cè)重對學生思想方法的滲透和思維品質(zhì)的培養(yǎng)。這使得剛?cè)敫咧械膶W生不容易適應(yīng)這種教學方法,聽課時就存在思維障礙,不容易跟上教師的思維。
2.初高中數(shù)學學習方法的差異
在初中,教師講得細,類型歸納得全,反復(fù)練習。學生只要記憶概念、公式及例題類型,一般都可以取得好成績。而到了高中,數(shù)學學習要求學生勤于思考,善于歸納總結(jié),掌握數(shù)學思想方法。高中習題的內(nèi)容往往較為靈活,所以,剛?cè)雽W的高一新生,往往沿用初中學法,致使學習出現(xiàn)知識點理解困難,不能靈活運用知識點解題,解題速度慢,沒有預(yù)習、復(fù)習、總結(jié)等自我消化、自我調(diào)整的時間。這顯然不利于良好學法的形成和學習質(zhì)量的提高。有些高一學生,還沿襲初中的思維方式,只停留在了解所學的“是什么”,而很少去思考“為什么”,遇到小小思維上的障礙,不是首先動手動腦去研究,而是求助他人或直接翻看答案中的解答過程。
三、初高中數(shù)學教學銜接的策略
興趣是學習的第一推動力,教師在授課過程中關(guān)鍵要培養(yǎng)學生對數(shù)學學習的興趣。在這一階段不適宜出現(xiàn)難度過高的習題講解,通過簡明易懂的習題提高學生學習的信心。重視學生數(shù)學學習的快樂體驗可以使學生產(chǎn)生數(shù)學學習的強大內(nèi)驅(qū)力,從而使得學生在數(shù)學學習過程中信心倍增。
1.幫助學生度過初高中的“平臺期”
初高中學習有一個明顯的難度和方法提高的過程,我們可以認為這是一個“平臺期”。高中數(shù)學許多必備知識在初中數(shù)學教學中不作要求或要求較低,導致學生普遍出現(xiàn)初高中數(shù)學知識銜接不上的情況。如立方和、立方差公式,十字相乘法等等,在高中要求學生能熟練應(yīng)用于解題。在初中未學過十字相乘法的學生,每次分解二次式,就只能使用求根公式,計算強度大,速度慢,影響解題。建議在入學第一周不要急于講高一新課內(nèi)容,而應(yīng)將初中要求較低,而高中常用的知識進行整理,根據(jù)高中學習的要求適當?shù)丶由钔貙挘瑸閷W生掃清學習中的障礙。
初高中數(shù)學知識有很多銜接點,如函數(shù)概念、平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,變得更加抽象了,有的研究范圍擴大了,有些在初中成立的結(jié)論到高中可能不成立,例如初中平面幾何中有:垂直于同一條直線的直線互相平行。這個結(jié)論在高中立體幾何中不再成立,而學生極易混淆。如何讓學生在初中已有知識的基礎(chǔ)上學好高中數(shù)學知識,關(guān)鍵一是教學中恰當?shù)剡M行鋪墊,以減緩坡度,將教學目標分解成若干的遞進層次,并逐層落實;通過逐步分解知識難點,并在概念的思辨中不斷促進學生理性思維的發(fā)展。二是對學生做好學法指導,將初高中學習方法上的差異明確告訴學生,并要求學生在學習過程中加以注意。
2.培養(yǎng)良好的學習習慣
由于高中的學習強度遠大于初中階段,教師在這一階段應(yīng)該有耐心地幫助學生形成有效的學習習慣。良好的學習習慣是學好高中數(shù)學的重要因素。它包括:制訂計劃、課前自習、專心聽課、及時復(fù)習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習這幾個方面。改進學生的學習方法,可以這樣進行:引導學生養(yǎng)成認真制訂計劃的習慣,合理安排學習時間,從盲目的學習中解放出來;可布置一些思考題和預(yù)習作業(yè),培養(yǎng)學生自主探究的能力,讓學生帶著問題有針對性地聽課。還要引導學生學會聽課,要求做到“勤動腦、勤動手”,注意力高度集中,認真思考課堂上的知識點,勤練例題、練習題。
引導學生養(yǎng)成及時復(fù)習的習慣,以強化對基本概念、知識體系的理解和記憶。引導學生養(yǎng)成獨立作業(yè)的習慣,要獨立地分析問題、解決問題。引導學生養(yǎng)成系統(tǒng)復(fù)習歸納小結(jié)的習慣,將所學新知識融入有關(guān)的體系和網(wǎng)絡(luò)中,以保持知識的完整性。引導學生養(yǎng)成閱讀有關(guān)報刊和資料的習慣,以進一步拓寬眼界,保持可持續(xù)發(fā)展的后勁。加強學法指導應(yīng)寓于知識講解、作業(yè)評講、試卷分析等各種教學活動中。
四、一點認識
上面我們提出了初高中銜接段學生學習存在的問題以及可能的解決方法。教學的過程,我們教師所能提高的就是我們的教育教學方法,同時教師對數(shù)學教學工作的熱心,對數(shù)學教學所表現(xiàn)出來的濃厚興趣,必將反映到數(shù)學課堂教學中,從而產(chǎn)生不斷的教學激情,這種激情會潛移默化地感染到學生的心靈,并對學生數(shù)學學習產(chǎn)生正面的影響,從而讓他們從內(nèi)心感受數(shù)學學習的積極意義。
參考文獻:
。1]王岳庭.數(shù)學教師的素質(zhì)與中學生數(shù)學素質(zhì)的培養(yǎng)論文集[M].北京:海洋出版社。
初一數(shù)學知識點4
1.1正數(shù)與負數(shù)
在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。
與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。
1.3有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學計數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。
數(shù)學最常用且非常實用的學習方法
1、預(yù)習很重要:
往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習是學習的必要過程,還是提高自學能力的好方法。
2、聽講有學問:
聽分析、聽思路、聽應(yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。
3、做好錯題本:
每個會學習的學生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學沒有錯題本,或者是只做不用。這樣學習效果都不好。
4、用好課外書:
正確認識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學習的替代品。
5、注意總結(jié)和反思:
知識點、解題方法和技巧、經(jīng)驗和教訓。
6、接受數(shù)學思想方法的指導:
要注意數(shù)學思想和方法的指導,站得高,才能看得遠。
關(guān)于數(shù)學常見誤區(qū)有哪些
1、被動學習
許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內(nèi)容。
2、學不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、進一步學習條件不具備
高中數(shù)學與初中數(shù)學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
如何整理數(shù)學學科課堂筆記
一、內(nèi)容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應(yīng)的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結(jié)。注意記下老師的課后總結(jié),這對于濃縮一堂課的.內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗的老師在課后小結(jié)時,一方面是承上歸納所學內(nèi)容,另一方面又是啟下布置預(yù)習任務(wù)或點明后面所要學的內(nèi)容,做好筆記可以把握學習的主動權(quán),提前作準備,做到目標任務(wù)明確。
五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數(shù)學常用解題技巧有哪些
第一,應(yīng)堅持由易到難的做題順序。近年來高考數(shù)學試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實體設(shè)置的結(jié)構(gòu)中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關(guān)鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應(yīng)先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應(yīng)運用最好的解題方法。因為選擇題和填空題都是看結(jié)果不看過程,因此在這個過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。
初一數(shù)學知識點5
一、將考試的一些錯誤信息進行分類
①遺憾之錯
就是分明會做,反而做錯了的題。
比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計算之錯”是由于計算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達之錯”是自己答案正確但與題目要求的表達不一致,如單位混用等。
②似非之錯
理解的不夠透徹,應(yīng)用得不夠自如;回答不嚴密、不完整;第一遍做對了,一改反而改錯了;或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。
③無為之錯
由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應(yīng)用的問題。
一般情況下,這三類錯誤的比例是2:7:1,你也可以自己分析一下自己的三類錯誤比例。得出結(jié)論后,就知道問題出在哪里,要針對性進行解決。
二、出現(xiàn)這些錯誤情況的原因
①被動學習
許多同學有很強的依賴或懶惰的心理,只是被動的跟隨老師的慣性運轉(zhuǎn),沒有掌握學習的主動權(quán)。表現(xiàn)在不定計劃、坐等上課,課前沒有預(yù)習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所有內(nèi)容。
②學不得法
老師上課一般都要講清知識點的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
③不重視基礎(chǔ)
一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
、軘(shù)學思維不夠?qū)拸V
有的同學不會對知識的深度、廣度,以及各章節(jié)進行總結(jié),并融會貫通,不會“多角度”考慮,不會“概括”、“類比”、“聯(lián)想”、“抽象”等各種方法與思維。
、菟烙浻脖,不能遷移知識
初中數(shù)學主要是以形象、通俗的語言方式進行表達。有些同學建立了統(tǒng)一的思維模式,就只能機械的進行操作,形成一種定勢方式。而不會加強知識的遷移,對一道題,要盡可能多想解法,多開動“腦筋”,使思維“活”起來。對一些相近的題,要善于總結(jié),形成“一法多題”。
三、科學的學習方法
學生僅僅想學是不夠的,還必須“會學”,要講究科學的學習方法,提高學習效率,才能變被動為主動。
、倥囵B(yǎng)良好的學習習慣
良好的`學習習慣包括制定計劃、課前自學、專心上課、及時復(fù)習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面。
制定計劃明確學習目的。合理的學習計劃是推動主動學習和克服困難的內(nèi)在動力。既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。
課前預(yù)習是取得較好學習效果的基礎(chǔ)。預(yù)習不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。上課專心聽重點難點,把老師補充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
及時復(fù)習是提高效率學習的重要一環(huán)。通過反復(fù)閱讀教材,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較。
獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所有新知識的理解和對新技能的掌握過程。
解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。做錯的作業(yè)要再做一遍,對錯誤的地方?jīng)]弄清楚要反復(fù)思考。
系統(tǒng)小結(jié)是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,提示知識間的內(nèi)在聯(lián)系,以達到所有知識融會貫通的目的。
課外學習包括閱讀課外書籍與報刊,課外學習是課內(nèi)學習的補充和繼續(xù),它不僅能豐富同學們的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學習和工作的能力。
、谥刃驖u進,防止急躁
由于學生年齡較小,閱歷有限,有些學生容易急躁,有的同學貪多求快,有的同學想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。學習是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成。學習是一項循序漸進、長期積累的過程,要有恒心、決心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。
、垩芯繉W科特點,尋找最佳學習方法
數(shù)學學科擔負著培養(yǎng)學生運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。它的特點是具有高度的抽象性、邏輯性和廣泛性,對能力要求較高。具體尋找方法因人而異,但學習的五個環(huán)節(jié):預(yù)習、上課、復(fù)習、作業(yè)、總結(jié)是少不了的。
、芏嘟涣、多反思解疑,化解分化點
多和同學交流,多向老師請教,多開展變式練習,化解分化點,以達到靈活掌握知識、運用知識的目的。
只要學習科學方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聰明”,多交流,多反思,養(yǎng)成良好的學習習慣,就能順利度過學習適應(yīng)期,就能在今后的數(shù)學成績突飛猛進。
四、學數(shù)學的幾個建議:
1、記數(shù)學筆記,特別是對概念理解的不同側(cè)面和數(shù)學規(guī)律,以及老師補充的課外知識。
2、建立數(shù)學糾錯本。
3、記憶數(shù)學規(guī)律和數(shù)學小結(jié)論。
4、與同學建立良好關(guān)系,爭做“小老師”,形成數(shù)學學習“互助組”。
5、增加數(shù)學課外閱讀,加大自學力度。
6、反復(fù)鞏固,消滅前學后忘。
7、學會總結(jié)歸類。
初一數(shù)學知識點6
一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的.最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了
初一數(shù)學知識點7
代數(shù)初步知識
1、代數(shù)式:用運算符號“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式、注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式、
2、列代數(shù)式的幾個注意事項:
。1)數(shù)與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“”乘,也不能省略乘號;
。3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
。4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×112應(yīng)寫成a;
233(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
a(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的`差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a、
3、幾個重要的代數(shù)式:(m、n表示整數(shù))
。1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
。3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a+b,負數(shù)是:-a-b,非負數(shù)是:a,非正數(shù)是:-a、2222222
有理數(shù)
1、有理數(shù):(1)凡能寫成
qp(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù)、正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)
統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)、注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
正有理數(shù)
(2)有理數(shù)的分類:
、儆欣頂(shù)零負有理數(shù)正整數(shù)正分數(shù)負整數(shù)負分數(shù)整數(shù)
、谟欣頂(shù)分數(shù)正整數(shù)零負整數(shù)正分數(shù)負分數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
1.a(chǎn)≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù)、
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線、
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù)、
4、絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);
注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(a0)a(a0)a(2)絕對值可表示為:a0(a0)或a;絕對值的問題經(jīng)常分類討論;
初一數(shù)學知識點8
1、某工作,甲單獨干需用15小時完成,乙單獨干需用12小時完成,若甲先干1小時、乙又單獨干4小時,剩下的工作兩人合作,問:再用幾小時可全部完成任務(wù)?
2、某工廠計劃26小時生產(chǎn)一批零件,后因每小時多生產(chǎn)5件,用24小時,不但完成了任務(wù),而且還比原計劃多生產(chǎn)了60件,問原計劃生產(chǎn)多少零件?
3、某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳、1個小餐廳,可供2280名學生就餐。
。1)求1個大餐廳、1個小餐廳分別可供多少名學生就餐;
。2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由。
4、甲乙兩件衣服的`成本共500元,商店老板為獲取利潤,決定將家服裝按50%的利潤定價,乙服裝按40%的利潤定價,在實際銷售時,應(yīng)顧客要求,兩件服裝均按9折出售,這樣商店共獲利157元,求甲乙兩件服裝成本各是多少元?
初一數(shù)學知識點9
不等式
用小于號或大于號表示大小關(guān)系的式子,叫做不等式(inequality)。
使不等式成立的未知數(shù)的.值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質(zhì):
不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
初一數(shù)學知識點10
一、目標與要求
1.了解全面調(diào)查的概念;會設(shè)計簡單的調(diào)查問卷,收集數(shù)據(jù);掌握劃記法,會用表格整理數(shù)據(jù);會畫扇形統(tǒng)計圖,能用統(tǒng)計圖描述數(shù)據(jù);經(jīng)歷統(tǒng)計調(diào)查的一般過程,體驗統(tǒng)計與生活的關(guān)系。
2.經(jīng)歷數(shù)據(jù)的收集、整理和分析的模擬過程,了解抽樣調(diào)查、樣本、個體與總體等統(tǒng)計概念;學會從樣本中分析、歸納出較為正確的結(jié)論,增強用統(tǒng)計方法解決問題的意識。
3.理解頻數(shù)、頻數(shù)分布的意義,學會制作頻數(shù)分布表;學會畫頻數(shù)分布直方圖和頻數(shù)折線圖。
二、重點
學會畫頻數(shù)分布直方圖;
分層抽樣的方法和樣本的分析、歸納;
抽樣調(diào)查、樣本、總體等概念以及用樣本估計總體的.思想;
全面調(diào)查的過程(數(shù)據(jù)的收集、整理、描述)。
三、難點
繪制扇形統(tǒng)計圖;
樣本的抽取;
分層抽樣方案的制定;
確定組距和組數(shù)。
初一數(shù)學知識點11
一.線段、射線、直線
※1.正確理解直線、射線、線段的概念以及它們的區(qū)別:
名稱圖形表示方法端點長度
直線直線AB(或BA)
直線l無端點無法度量
射線射線OM1個無法度量
線段線段AB(或BA)
線段l2個可度量長度
※2.直線公理:經(jīng)過兩點有且只有一條直線.
二.比較線段的長短
※1.線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離.
※2.比較線段長短的兩種方法:
、賵A規(guī)截取比較法;
、诳潭瘸叨攘勘容^法.
※3.用刻度尺可以畫出線段的中點,線段的和、差、倍、分;
用圓規(guī)可以畫出線段的和、差、倍.
三.角的度量與表示
※1.角:有公共端點的兩條射線組成的圖形叫做角;
這個公共端點叫做角的.頂點;
這兩條射線叫做角的邊.
※2.角的表示法:角的符號為“∠”
初一數(shù)學知識點12
代數(shù)初步知識
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“·”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.
3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.
有理數(shù)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的`特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a0,小數(shù)-大數(shù)第三篇: 初一上學期數(shù)學知識點總結(jié)
第二章:整式的加減
1、單項式:;單獨的一個數(shù)或一個字母也是單項式
2、系數(shù):;
3、單項式的次數(shù):;
4、多項式:;
叫做多項式的項;的項叫做常數(shù)項。
5、多項式的次數(shù):;
6、整式:;
7、同類項:;
8、把多項式中的同類項合并成一項,叫做合并同類項;
合并同類項后,所得項的系數(shù)是合并同前各同類項的系數(shù)的和,且字母部分不變。
9、去括號:(1)如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同
(2)如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反
10、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項
第三章:一次方程(組)
一、方程的有關(guān)概念
1、方程的概念:
(1)含有未知數(shù)的等式叫方程。
(2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程。
2、等式的基本性質(zhì):
(1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。若a=b,則a+c=b+c或a–c=b–c。
(2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式。若a=b,則ac=bc或
二、解方程
1、移項的有關(guān)概念:
把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項。這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù)。把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號。
2、解一元一次方程的步驟:
解一元一次方程的步驟
主要依據(jù)
1、去分母
等式的性質(zhì)2
2、去括號
去括號法則、乘法分配律
3、移項
等式的性質(zhì)1
4、合并同類項
合并同類項法則
5、系數(shù)化為1
等式的性質(zhì)2
6、檢驗
3、二元一次方程組
(1)將二元一次方程用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);
(2)解二元一次方程組的指導思想是轉(zhuǎn)化的思想;
(3)解二元一次方程組的方法有:加減消元法;代入消元法;
二、列方程解應(yīng)用題
1、列方程解應(yīng)用題的一般步驟:
(1)將實際問題抽象成數(shù)學問題;
(2)分析問題中的已知量和未知量,找出等量關(guān)系;
(3)設(shè)未知數(shù),列出方程;
(4)解方程;
(5)檢驗并作答。
2、一些實際問題中的規(guī)律和等量關(guān)系:
(1)幾種常用的面積公式:
長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;
梯形面積公式:S=,a,b為上下底邊長,h為梯形的高,S為梯形面積;
圓形的面積公式:,r為圓的半徑,S為圓的面積;
三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積。
(2)幾種常用的周長公式:
長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長。
正方形的周長:L=4a,a為正方形的邊長,L為周長。
圓:L=2πr,r為半徑,L為周長。
初一數(shù)學知識點13
【知識點】:
認識直線、線段與射線,會用字母正確讀出直線、線段和射線。
直線:可以向兩端無限延伸;沒有端點。讀作 :直線AB或直線BA。
線段:不能向兩端無限延伸;有兩個端點。讀作:線段AB或線段BA。
射線:可以向一端無限延伸;有一個端點。讀作:射線AB(只有一種讀法,從端點讀起。)
補充【知識點】:
畫直線。
過一點可畫無數(shù)條直線;過兩個能畫一條直線;過三點,如果三點在一條線上,經(jīng)過三點只能畫一條直線,如果這三點不在一條線上,那么經(jīng)過三點不能畫出直線。
明確兩點之間的距離,線段比曲線、折線要短。
直線、射線可以無限延長。因為直線沒有端點,射線只有一個端點,所以不可以測量,沒有具體的`長度。如:直線長4厘米。是錯誤的。只有線段才能有具體的長度。
初一數(shù)學知識點14
①大于0的數(shù)叫正數(shù)。
②在正數(shù)前面加上“-”號的數(shù),叫做負數(shù)。
、0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是唯一的`中性數(shù)。
、芨闱逑喾匆饬x的量:南北;東西;上下;左右;上升下降;高低;增長減少等。
⑤正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(結(jié)合數(shù)軸和一元一次方程出題),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)。整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。
、薹秦摂(shù)就是正數(shù)和零;非負整數(shù)就是正整數(shù)和0。
、摺盎鶞省鳖}:有固定的基準數(shù),和的求法:基準數(shù)×個數(shù)+與基準數(shù)相比較的數(shù)的代數(shù)和;平均數(shù)的求法:基準數(shù)+與基準數(shù)相比較的數(shù)的代數(shù)和÷個數(shù)(寫出原數(shù),也可用小學知識解答);“非基準”題:無固定的基準數(shù),如明天和今天比,后天和明天比。
初一數(shù)學知識點15
數(shù)學有理數(shù)知識點:
一、目標與要求
1.了解正數(shù)與負數(shù)是從實際需要中產(chǎn)生的。
2.能正確判斷一個數(shù)是正數(shù)還是負數(shù),明確0既不是正數(shù)也不是負數(shù)。
3.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進行有理數(shù)的除法運算;
4.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);
5.通過將除法運算轉(zhuǎn)化為乘法運算,培養(yǎng)學生的轉(zhuǎn)化的思想;通過有理數(shù)的除法
二、重點
正、負數(shù)的概念;
正確理解數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù);
有理數(shù)的加法法則;
除法法則和除法運算。
三、難點
負數(shù)的概念、正確區(qū)分兩種不同意義的量;
數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù);
異號兩數(shù)相加的法則;
根據(jù)除法是乘法的逆運算,歸納出除法法則及商的符號的確定
四、知識點、概念總結(jié)
1.正數(shù):比0大的數(shù)叫正數(shù)。
2.負數(shù):比0小的數(shù)叫負數(shù)。
3.有理數(shù):
(1)凡能寫成q/p(p,q為整數(shù)且p不等于0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。
注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:
4.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。
5.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0等價于a+b=0等價于a、b互為相反數(shù)。
6.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);
注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經(jīng)常分類討論;
7.有理數(shù)比大。
(1)正數(shù)的絕對值越大,這個數(shù)越大;
(2)正數(shù)永遠比0大,負數(shù)永遠比0小;
(3)正數(shù)大于一切負數(shù);
(4)兩個負數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)0,小數(shù)-大數(shù)0.
8.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);
注意:0沒有倒數(shù);若a0,那么a的倒數(shù)是1/a;若ab=1等價于a、b互為倒數(shù);若ab=-1等價于a、b互為負倒數(shù)。
9. 有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù)。
10.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;
(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
11.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b)。
12.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的'符號由負因式的個數(shù)決定。
13. 有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
14.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即a/0無意義。
15.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數(shù)時:(-a)n =an 或(a-b)n=(b-a)n 。
16.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
17.科學記數(shù)法:
把一個大于10的數(shù)記成a10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。
18.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。
19.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。
20.混合運算法則:先乘方,后乘除,最后加減。
初一數(shù)學有理數(shù)知識點的相關(guān)內(nèi)容就為大家介紹到這兒了,希望能幫助到大家。
【初一數(shù)學知識點】相關(guān)文章:
數(shù)學初一知識點總結(jié)07-04
初一數(shù)學知識點04-18
初一數(shù)學必考的知識點11-16
初一數(shù)學重要知識點10-08
初一數(shù)學知識點的總結(jié)11-07
初一數(shù)學角知識點講解07-12
初一數(shù)學下知識點總結(jié)12-07