青島版小學數(shù)學六年級上冊知識點
在平時的學習中,大家都沒少背知識點吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。想要一份整理好的知識點嗎?下面是小編精心整理的青島版小學數(shù)學六年級上冊知識點,僅供參考,大家一起來看看吧。
小學數(shù)學六年級上冊知識點 篇1
一、分數(shù)除法的意義:
分數(shù)除法是分數(shù)乘法的逆運算,已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。
二、分數(shù)除法計算法則:
除以一個數(shù)(0除外),等于乘上這個數(shù)的倒數(shù)。
1、被除數(shù)÷除數(shù)=被除數(shù)×除數(shù)的倒數(shù)。
2、除法轉化成乘法時,被除數(shù)一定不能變,“÷”變成“×”,除數(shù)變成它的倒數(shù)。
3、分數(shù)除法算式中出現(xiàn)小數(shù)、帶分數(shù)時要先化成分數(shù)、假分數(shù)再計算。
4、被除數(shù)與商的變化規(guī)律:
、俪源笥1的數(shù),商小于被除數(shù):a÷b=c當b>1時,c<a p="" (a≠0)
<a p="" (a≠0)
、诔孕∮1的數(shù),商大于被除數(shù):a÷b=c當b<1時,c>a (a≠0 b≠0)
<a p="" (a≠0)
③除以等于1的數(shù),商等于被除數(shù):a÷b=c當b=1時,c=a
三、分數(shù)除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數(shù)字的左下角。
2、運算順序:
①連除:同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據(jù)“除以幾個數(shù),等于乘上這幾個數(shù)的積”的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
、诨旌线\算:沒有括號的先乘、除后加、減,有括號的先算括號里面,再算括號外面。
(a±b)÷c=a÷c±b÷c
小學生數(shù)學應用題理解能力差怎么辦
培養(yǎng)孩子理解應用題意的能力
孩子對于一些應用題目的表述,不能正確的理解其中的意思,也是正常的。應用題是小學低年級數(shù)學教學的重點和難點。是小學生害怕的學習內容。家長在輔導孩子的過程中,要注意充分利用生活實際與實物場景的方法,克服難點,誘發(fā)學習興趣。
課堂緊跟老師
課堂時間的把握,我們都知道,老師是我們學到知識的最佳途徑之一。只要自己課堂上面把握好時間,那么自己的數(shù)學成績自然而然地就會提高。上課的時候,千萬不能馬虎大意。這一點是非常的重要,自己平時一定要牢記。
三步糾錯法
很多孩子在做錯題的時候,都只是簡單改正,沒有去思考背后的原因。因此,如果孩子做錯題,要引導他們進行三步糾錯法,從而從根源上解決錯題。
當孩子做錯題的時候,要引導他們從這三個方面進行思考:
1、錯在哪里?
2、錯的原因是什么?
3、當符合什么條件時,錯誤才能變成正確?
數(shù)學圖形的變換知識點
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特征和性質:
、賹ΨQ點到對稱軸的距離相等;
②對稱點的連線與對稱軸垂直;
、蹖ΨQ軸兩邊的圖形大小形狀完全相同。
3、物體旋轉時應抓住三點:
、傩D中心;
②旋轉方向;
、坌D角度。旋轉只改變物體的位置,不改變物體的形狀、大小。
小學數(shù)學六年級上冊知識點 篇2
分數(shù)乘法
(一)分數(shù)乘法意義:
1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。
“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。
2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。
“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)
(二)分數(shù)乘法計算法則:
1、分數(shù)乘整數(shù)的運算法則是:分子與整數(shù)相乘,分母不變。
(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)
(2)約分是用整數(shù)和下面的分母約掉最大公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結果必須是最簡分數(shù))。
2、分數(shù)乘分數(shù)的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。
(分子乘分子,分母乘分母)
(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。
(2)分數(shù)化簡的方法是:分子、分母同時除以它們的最大公因數(shù)。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結果才是最簡單分數(shù))。
(4)分數(shù)的基本性質:分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。
(三)積與因數(shù)的關系:
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b >1時,c>a。
一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c>a。
一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當b =1時,c=a 。
在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。
(四)分數(shù)乘法混合運算
1、分數(shù)乘法混合運算順序與整數(shù)相同,先乘、除后加、減,有括號的先算括號里面的,再算括號外面的。
2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;
運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。
1、倒數(shù)是兩個數(shù)的關系,它們互相依存,不能單獨存在。單獨一個數(shù)不能稱為倒數(shù)。(必須說清誰是誰的倒數(shù))
2、判斷兩個數(shù)是否互為倒數(shù)的唯一標準是:兩數(shù)相乘的積是否為“1”。例如:a×b=1則a、b互為倒數(shù)。
3、求倒數(shù)的方法:
、偾蠓謹(shù)的倒數(shù):交換分子、分母的位置。
、谇笳麛(shù)的倒數(shù):整數(shù)分之1。
、矍髱Х謹(shù)的倒數(shù):先化成假分數(shù),再求倒數(shù)。
④求小數(shù)的倒數(shù):先化成分數(shù)再求倒數(shù)。
4、1的倒數(shù)是它本身,因為1×1=1,0沒有倒數(shù),因為任何數(shù)乘0積都是0,且0不能作分母。
5、真分數(shù)的倒數(shù)是假分數(shù),真分數(shù)的倒數(shù)大于1,也大于它本身,假分數(shù)的倒數(shù)小于或等于1。帶分數(shù)的倒數(shù)小于1。
(六)分數(shù)乘法應用題——用分數(shù)乘法解決問題
1、求一個數(shù)的幾分之幾是多少?(用乘法)
已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。
2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。
3、什么是速度?
速度是單位時間內行駛的路程。
速度=路程÷時間; 時間=路程÷速度;路程=速度×時間。
單位時間指的是1小時1分鐘1秒等這樣的大小為1的時間單位,每分鐘、每小時、每秒鐘等。
4、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙; 少:(乙-甲)÷乙。
小學數(shù)學六年級上冊知識點 篇3
比
比:兩個數(shù)相除也叫兩個數(shù)的比
1、比式中,比號(∶)前面的數(shù)叫前項,比號后面的項叫做后項,比號相當于除號,比的前項除以后項的商叫做比值。
連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數(shù)的.關系,可以用分數(shù)表示,寫成分數(shù)的形式,讀作幾比幾。
例:12∶20,讀作:12比20
區(qū)分比和比值:比值是一個數(shù),通常用分數(shù)表示,也可以是整數(shù)、小數(shù)。
比是一個式子,表示兩個數(shù)的關系,可以寫成比,也可以寫成分數(shù)的形式。
3、比的基本性質:比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變。
4、化簡比:化簡之后結果還是一個比,不是一個數(shù)。
(1)用比的前項和后項同時除以它們的最大公約數(shù)。
(2)兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。
(3)兩個小數(shù)的比,向右移動小數(shù)點的位置,也是先化成整數(shù)比。
5、求比值:把比號寫成除號再計算,結果是一個數(shù)(或分數(shù)),相當于商,不是比。
6、比和除法、分數(shù)的區(qū)別:
除法:被除數(shù)除號(÷) 除數(shù)(不能為0) 商不變性質 除法是一種運算。
分數(shù):分子分數(shù)線(—)分母(不能為0) 分數(shù)的基本性質 分數(shù)是一個數(shù)。
比:前項比號(∶) 后項(不能為0) 比的基本性質 比表示兩個數(shù)的關系。
商不變性質:被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)的基本性質:分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)除法和比的應用:
1、已知單位“1”的量用乘法。
2、未知單位“1”的量用除法。
3、分數(shù)應用題基本數(shù)量關系(把分數(shù)看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙
(2)甲比乙多(少)幾分之幾?
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
5、畫線段圖:
(1)找出單位“1”的量,先畫出單位“1”,標出已知和未知。
(2)分析數(shù)量關系。
(3)找等量關系。
(4)列方程。
兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
小學數(shù)學六年級上冊知識點 篇4
1、理解比例的意義和基本性質,會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關系的圖像,能根據(jù)給出的有正比例關系的數(shù)據(jù)在有坐標系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。
4、解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或實際距離。
5、認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6、滲透函數(shù)思想,使學生受到辯證唯物主義觀點的啟蒙教育。
7、比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8、組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。
9、比例的性質:在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、解比例:根據(jù)比例的基本性質,如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。
求比例中的未知項,叫做解比例。
例如:3:x=4:8,內項乘內項,外項乘外項,則:4x=3×8,解得x=6。
11、正比例和反比例:
(1)成正比例的量:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。
、趫A的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。
、蹐A的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。
、躽=5x,y和x成正比例,因為:y÷x=5(一定)。
、菝刻炜吹捻摂(shù)一定,總頁數(shù)和天數(shù)成正比例,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。
(2)成反比例的量:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。用字母表示x×y=k(一定)
例如:
、俾烦桃欢,速度和時間成反比例,因為:速度×時間=路程(一定)。
②總價一定,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定)。
③長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。
、40÷x=y,x和y成反比例,因為:x×y=40(一定)。
、菝旱目偭恳欢,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定)。
12、圖上距離:實際距離=比例尺;
例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最后求得比例尺是1:200000。
13、實際距離=圖上距離÷比例尺;
例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。
14、圖上距離=實際距離×比例尺;
例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)
1、根據(jù)方向和距離可以確定物體在平面圖上的位置。
2、在平面圖上標出物體位置的方法:
先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最后找出物體的具體位置,并標上名稱。
3、描述路線圖時,要先按行走路線確定每一個參照點,然后以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什么方向走了多遠到哪兒。
4、繪制路線圖的方法:
(1)確定方向標和單位長度。
(2)確定起點的位置。
。3)根據(jù)描述,從起點出發(fā),找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其余每一段都要以前一段的終點為參照點。
。4)以誰為參照點,就以誰為中心畫出“十”字方向標,然后判斷下一地點的方向和距離。
【小學數(shù)學六年級上冊知識點】相關文章:
小學六年級數(shù)學知識點上冊12-23
數(shù)學上冊知識點08-02
小學六年級數(shù)學知識點上冊匯集09-15
小學六年級數(shù)學上冊知識點歸納01-27