數(shù)學六年級下冊單元知識點
在年少學習的日子里,看到知識點,都是先收藏再說吧!知識點就是掌握某個問題/知識的學習要點。掌握知識點是我們提高成績的關鍵!下面是小編整理的數(shù)學六年級下冊單元知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學六年級下冊單元知識點 1
1.負數(shù):負數(shù)是數(shù)學術語,指小于0的實數(shù),如-3.
任何正數(shù)前加上負號都等于負數(shù)。在數(shù)軸線上,負數(shù)都在0的左側,所有的負數(shù)都比自然數(shù)小。負數(shù)用負號“-”標記,如-2,-5.33,-45,-0.6等。
2.正數(shù):大于0的數(shù)叫正數(shù)(不包括0)
若一個數(shù)大于零(>0),則稱它是一個正數(shù)。正數(shù)的前面可以加上正號“+”來表示。正數(shù)有無數(shù)個,其中分正整數(shù),正分數(shù)和正無理數(shù)。
3.正數(shù)的幾何意義:數(shù)軸上0右邊的數(shù)叫做正數(shù)
4.數(shù)軸:規(guī)定了原點,正方向和單位長度的直線叫數(shù)軸。
所有的實數(shù)都可以用數(shù)軸上的點來表示。也可以用數(shù)軸來比較兩個實數(shù)的大小。
5.數(shù)軸的三要素:原點、單位長度、正方向。
6.圓柱:以矩形的一邊所在直線為旋轉軸,其余三邊旋轉形成的面所圍成的旋轉體。如下圖所示:
即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。
其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行于AG的線段叫做圓柱的母線,DA和DG旋轉形成的兩個圓叫做圓柱的底面,DD旋轉形成的曲面叫做圓柱的側面。
7.圓柱的體積:圓柱所占空間的大小,叫做這個圓柱體的體積。設一個圓柱底面半徑為r,高為h,則體積V:V=πr2h;如S為底面積,高為h,體積為V:V=Sh
8.圓柱的側面積:圓柱的側面積=底面的周長_高,S側=Ch(注:c為πd)
圓柱的兩個圓面叫做底面(又分上底和下底);圓柱有一個曲面,叫做側面;兩個底面之間的距離叫做高(高有無數(shù)條)。
特征:圓柱的底面都是圓,并且大小一樣。
9.圓錐解析幾何定義:圓錐面和一個截它的平面(滿足交線為圓)組成的空間幾何圖形叫圓錐。
10.圓錐立體幾何定義:以直角三角形的一條直角邊所在直線為旋轉軸,其余兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。該直角邊叫圓錐的軸。如下圖所示:
11.圓錐的體積:一個圓錐所占空間的大小,叫做這個圓錐的體積。一個圓錐的體積等于與它等底等高的圓柱的體積的1/3。
根據(jù)圓柱體積公式V=Sh(V=rrπh),得出圓錐體積公式:V=1/3Sh
S是圓錐的底面積,h是圓錐的高,r是圓錐的底面半徑
12.圓錐體展開圖的繪制:圓錐體展開圖由一個扇形(圓錐的側面)和一個圓(圓錐的底面)組成。(如右圖)在繪制指定圓錐的展開圖時,一般知道a(母線長)和d(底面直徑)
13.圓錐的表面積:一個圓錐表面的面積叫做這個圓錐的表面積。
圓錐的`表面積由側面積和底面積兩部分組成。
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n為角度制,α為弧度制,α=π(n/180)
14.圓柱與圓錐的關系:與圓柱等底等高的圓錐體積是圓柱體積的三分之一。
體積和高相等的圓錐與圓柱(等低等高)之間,圓錐的底面積是圓柱的三倍。
體積和底面積相等的圓錐與圓柱(等低等高)之間,圓錐的高是圓柱的三倍。
底面積和高不相等的圓柱圓錐不相等。
15.生活中的圓錐:生活中經(jīng)常出現(xiàn)的圓錐有:沙堆、漏斗、帽子。圓錐在日常生活中也是不可或缺的。
16.比的意義:
(1)兩個數(shù)相除又叫做兩個數(shù)的比
(2)“:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。
(3)同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。
(4)比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。
(5)比的后項不能是零。
(6)根據(jù)分數(shù)與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數(shù)值。
17.比的性質:比的前項和后項同時乘上或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質。
18.求比值和化簡比:求比值的方法:用比的前項除以后項,它的結果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。
根據(jù)比的基本性質可以把比化成最簡單的整數(shù)比。它的結果必須是一個最簡比,即前、后項是互質的數(shù)。
19.比例尺:圖上距離:實際距離=比例尺
要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。
線段比例尺:在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應的實際距離。
20.按比例分配:
在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。
21.比例的意義:比例的意義
表示兩個比相等的式子叫做比例。
組成比例的四個數(shù),叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
22.比例的性質:在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質。
23.解比例:根據(jù)比例的基本性質,如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。求比例中的未知項,叫做解比例。
24.成正比例的量:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。用字母表示y/x=k(一定)
25.成反比例的量:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。用字母表示x×y=k(一定)
數(shù)學梯形面積公式
(1)梯形的面積公式:(上底+下底)×高÷2。用字母表示:(a+b)×h÷2
(2)另一計算公式: 中位線×高用字母表示:l·h
(3)對角線互相垂直的梯形:對角線×對角線÷2
數(shù)學異分母分數(shù)乘法知識點
異分母相乘,分母和分母相乘作分母,分子和分子相乘作分子,能約分的要先約分,結果需化成最簡分數(shù)形式。
舉例說明如下:
1/2×3/5。1/2×3/5是兩個分母不同的分數(shù)的乘法。
分母和分母相乘作分母,分子和分子相乘作分子,可得:1/2×3/5=(1×3)/(2×5)=3/10。3/10是最簡分數(shù)形式,無需化簡。
數(shù)學六年級下冊單元知識點 2
一、圓柱
1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉而得的。
圓柱也可以由長方形卷曲而得到。
兩種方式:
1、以長方形的長為底面周長,寬為高;
2、以長方形的寬為底面周長,長為高。
其中,第一種方式得到的圓柱體體積較大。
2、圓柱的高是兩個底面之間的距離,一個圓柱有無數(shù)條高,他們的數(shù)值是相等的
3、圓柱的特征:
。1)底面的特征:圓柱的底面是完全相等的兩個圓。
(2)側面的特征:圓柱的側面是一個曲面。
(3)高的特征:圓柱有無數(shù)條高
4、圓柱的切割:
、贆M切:切面是圓,表面積增加2倍底面積,即S增=2πr,0,5
、谪Q切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
5、圓柱的側面展開圖:
、傺刂哒归_,展開圖形是長方形,如果h=2πr,則展開圖形為正方形
、诓谎刂哒归_,展開圖形是平行四邊形或不規(guī)則圖形
③無論怎么展開都得不到梯形
圓柱變形記,圓柱怎么變形成長方體?與長方體又有什么聯(lián)系?怎么借助長方體的體積計算圓柱的體積?
6、圓柱的相關計算公式:
底面積:S底=πr?0?5
底面周長:C底=πd=2πr
側面積:S側=2πrh
表面積:S表=2S底+S側=2πr?0?5+2πrh
體積:V柱=πr?0?5h
考試常見題型:
、僖阎獔A柱的底面積和高,求圓柱的側面積,表面積,體積,底面周長
、谝阎獔A柱的底面周長和高,求圓柱的側面積,表面積,體積,底面積
、垡阎獔A柱的底面周長和體積,求圓柱的側面積,表面積,高,底面積
、芤阎獔A柱的底面面積和高,求圓柱的側面積,表面積,體積
⑤已知圓柱的側面積和高,求圓柱的底面半徑,表面積,體積,底面積
以上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據(jù)圓柱的相關計算公式進行計算
無蓋水桶的表面積=側面積+一個底面積油桶的表面積=側面積+兩個底面積
煙囪通風管的表面積=側面積
只求側面積:燈罩、排水管、漆柱、通風管、壓路機、衛(wèi)生紙中軸、薯片盒包裝
側面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池
側面積+兩個底面積:油桶、米桶、罐桶類
二、圓錐
1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉而得到的。圓錐也可以由扇形卷曲而得到。
2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高
3、圓錐的特征:
(1)底面的特征:圓錐的底面一個圓。
。2)側面的特征:圓錐的側面是一個曲面。
。3)高的特征:圓錐有一條高。
4、圓錐的切割:
、贆M切:切面是圓
、谪Q切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,即S增=2rh
5、圓錐的相關計算公式:
底面積:S底=πr,0,5
底面周長:C底=πd=2πr
體積:V錐=1/3πr,0,5h
考試常見題型:
、僖阎獔A錐的底面積和高,求體積,底面周長
、谝阎獔A錐的底面周長和高,求圓錐的體積,底面積
、垡阎獔A錐的底面周長和體積,求圓錐的高,底面積
以上幾種常見題型的解題方法,通常是求出圓錐的底面半徑和高,再根據(jù)圓柱的相關計算公式進行計算
圓柱和圓錐的關系
1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。
3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
4、圓柱與圓錐等底等高,體積相差2/3Sh
小學數(shù)學單位換算公式
長度單位換算:
1千米=1000米。
1米=10分米。
1分米=10厘米。
1米=100厘米。
1厘米=10毫米。
面積單位換算:
1平方千米=100公頃。
1公頃=10000平方米。
1平方米=100平方分米。
1平方分米=100平方厘米。
1平方厘米=100平方毫米。
體(容)積單位換算:
1立方米=1000立方分米。
1立方分米=1000立方厘米。
1立方分米=1升。
1立方厘米=1毫升。
1立方米=1000升。
重量單位換算:
1噸=1000千克。
1千克=1000克。
1千克=1公斤。
人民幣單位換算:
1元=10角。
1角=10分。
1元=100分。
時間單位換算:
1世紀=100年。
1年=12月。
大月(31天)有:135781012月。
小月(30天)的有:46911月。
平年2月28天,閏年2月29天。
平年全年365天,閏年全年366天。
1日=24小時1時=60分。
1分=60秒1時=3600秒。
數(shù)學因數(shù)與倍數(shù)知識點
1、因數(shù)和倍數(shù):如果整數(shù)a能被b整除,那么a就是b的倍數(shù),b就是a的因數(shù)。
2、一個數(shù)的.因數(shù)的求法:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數(shù)的倍數(shù)的求法:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數(shù)。
4、2、5、3的倍數(shù)的特征:個位上是0、2、4、6、8的數(shù),都是2的倍數(shù)。個位上是0或5的數(shù),是5的倍數(shù)。一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
5、偶數(shù)與奇數(shù):是2倍數(shù)的數(shù)叫做偶數(shù)(0也是偶數(shù)),不是2的倍數(shù)的數(shù)叫做奇數(shù)。
6、質數(shù)和和合數(shù):一個數(shù),如果只有1和它本身兩個因數(shù)的數(shù)叫做質數(shù)(或素數(shù)),最小的質數(shù)是2、一個數(shù),如果除了1和它本身還有別的因數(shù)的數(shù)叫做合數(shù),最小的合數(shù)是4。
數(shù)學六年級下冊單元知識點 3
1、數(shù)與代數(shù):
比較系統(tǒng)地掌握有關整數(shù)、小數(shù)、分數(shù)和百分數(shù)、負數(shù)、比和比例、方程的基礎知識;
能比較熟練地進行整數(shù)、小數(shù)、分數(shù)的四那么運算;
能進行整數(shù)、小數(shù)加、減、乘、除的估算;
會使用學過的簡便算法,合理、靈活地進行計算;
會解學過的方程;
養(yǎng)成檢查和驗算的適應。
鞏固常用計量單位的表象,掌握所學單位間的進率,能夠進行簡單的改寫。
2、空間與圖形:
掌握所學幾何形體的特征;
能夠比較熟練地計算一些幾何形體的周長、面積和體積,并能應用;
鞏固所學的簡單的畫圖、測量等技能;
鞏固軸對稱圖形的認識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉的認識;
能用數(shù)對或依照方向和距離確定物體的位置,掌握有關比例尺的知識,并能應用。
3、統(tǒng)計與可能性:
掌握所學的統(tǒng)計初步知識;
能夠看和繪制簡單的統(tǒng)計圖表;
能夠依照數(shù)據(jù)做出簡單的推斷與預測;
會求一些簡單事件的可能性;
能夠解決一些計算平均數(shù)的實際問題。
數(shù)學奇偶數(shù)性質
1、兩個連續(xù)整數(shù)中必有一個奇數(shù)和一個偶數(shù)。
2、奇數(shù)+奇數(shù)=偶數(shù);偶數(shù)+奇數(shù)=奇數(shù);偶數(shù)+偶數(shù)+...+偶數(shù)=偶數(shù)。
3、奇數(shù)—奇數(shù)=偶數(shù);偶數(shù)—奇數(shù)=奇數(shù);奇數(shù)—偶數(shù)=奇數(shù)。
4、若a、b為整數(shù),則a+b與a—b有相同的奇偶性,即a+b與a—b同為奇數(shù)或同為偶數(shù)。
5、n個奇數(shù)的乘積是奇數(shù),n個偶數(shù)的`乘積是偶數(shù);算式中有一個是偶數(shù),則乘積是偶數(shù)。
6、奇數(shù)的個位是1、3、5、7、9;偶數(shù)的個位是0、2、4、6、8。
7、奇數(shù)的平方除以2、4、8余1。
8、任意兩個奇數(shù)的平方差是2、4、8的倍數(shù)。
數(shù)學平行四邊形和梯形知識點
1、直線外一點到直線所畫的垂直線段最短;這點到這條直線的垂足之間的長度叫距離。
2、兩條平行線之間的距離處處相等。
3、兩組對邊分別平行的四邊形叫做平行四邊形;平行四邊形有無數(shù)條高,平行四邊形不是軸對稱圖形。
4、一個平行四邊形在拉動過程中,面積變化,高變化,周長不變。平行四邊形具有易變性。
5、只有一組對邊平行的四邊形叫梯形。
當梯形的兩條腰相等時,這兩腰相等的梯形叫做等腰梯形。等腰梯形是軸對稱圖形。
四個角都是直角的四邊形叫長方形。
四個角都是直角,并且四條邊都相等的四邊形叫正方形。
5、畫高:
從平行四邊形一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高。垂足所在的邊叫做平行四邊形的底。
當梯形的兩條腰相等時,這兩腰相等的梯形叫做等腰梯形。
特別注意:畫高時,請注意;虛線、垂直標記、和名稱
【數(shù)學六年級下冊單元知識點】相關文章:
五年級第五單元數(shù)學下冊知識點04-20
一年級數(shù)學下冊各單元知識點09-21
小學數(shù)學第四單元知識點10-19
2017六年級下冊語文第四單元知識點03-30
六年級數(shù)學單元三知識點整合10-24
高等數(shù)學下冊知識點09-17
數(shù)學六年級上冊第三單元知識點10-24
六年級上冊數(shù)學1單元知識點09-19