亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

數(shù)學(xué) 百文網(wǎng)手機站

八年級上冊數(shù)學(xué)知識點因式分解

時間:2022-07-26 16:24:17 數(shù)學(xué) 我要投稿

八年級上冊數(shù)學(xué)知識點因式分解

  在日常的學(xué)習(xí)中,大家最不陌生的就是知識點吧!知識點就是掌握某個問題/知識的學(xué)習(xí)要點。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編收集整理的八年級上冊數(shù)學(xué)知識點因式分解,歡迎閱讀與收藏。

八年級上冊數(shù)學(xué)知識點因式分解

  八年級上冊數(shù)學(xué)知識點因式分解1

  (1)因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

  (2)公因式:一個多項式每一項都含有的相同的因式叫做這個多項式的公因式.

  (3)確定公因式的方法:公因數(shù)的系數(shù)應(yīng)取各項系數(shù)的最大公約數(shù);字母取各項的相同字母,而且各字母的指數(shù)取次數(shù)最低的.

  (4)提公因式法:一般地,如果多項式的各項有公因式可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.

  (5)提出多項式的公因式以后,另一個因式的確定方法是:用原來的多項式除以公因式所得的商就是另一個因式.

  (6)如果多項式的第一項的系數(shù)是負(fù)的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)是正的,在提出“-”號時,多項式的各項都要變號.

  (7)因式分解和整式乘法的關(guān)系:因式分解和整式乘法是整式恒等變形的正、逆過程,整式乘法的結(jié)果是整式,因式分解的結(jié)果是乘積式.

  (8)運用公式法:如果把乘法公式反過來,就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.

  (9)平方差公式:兩數(shù)平方差,等于這兩數(shù)的和乘以這兩數(shù)的差,字母表達(dá)式:a2-b2=(a+b)(a-b)

  (10)具備什么特征的兩項式能用平方差公式分解因式

 、傧禂(shù)能平方,(指的系數(shù)是完全平方數(shù))

 、谧帜钢笖(shù)要成雙,(指的指數(shù)是偶數(shù))

 、蹆身椃栂喾.(指的兩項一正號一負(fù)號)

  (11)用平方差公式分解因式的關(guān)鍵:把每一項寫成平方的形式,并能正確地判斷出a,b分別等于什么.

  (12)完全平方公式:兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.字母表達(dá)式:a2±2ab+b2=(a±b)2

  (13)完全平方公式的特點:

 、偎且粋三項式.

 、谄渲杏袃身検悄硟蓴(shù)的平方和.

 、鄣谌検沁@兩數(shù)積的正二倍或負(fù)二倍.

 、芫邆湟陨先矫娴奶攸c以后,就等于這兩數(shù)和(或者差)的平方.

  (14)立方和與立方差公式:兩個數(shù)的立方和(或者差)等于這兩個數(shù)的和(或者差)乘以它們的平方和與它們積的差(或者和).

  (15)利用立方和與立方差分解因式的關(guān)鍵:能把這兩項寫成某兩數(shù)立方的形式.

  (16)具備什么條件的多項式可以用分組分解法來進(jìn)行因式分解:如果一個多項式的項分組并提出公因式后,各組之間又能繼續(xù)分解因式,那么這個多項式就可以用分組分解法來分解因式.

  (17)分組分解法的前提:熟練地掌握提公因式法和公式法,是學(xué)好分組分解法的前提.

  (18)分組分解法的原則:分組后可以直接提出公因式,或者分組后可以直接運用公式.

  (19)在分組時要預(yù)先考慮到分組后能否繼續(xù)進(jìn)行因式分解,合理選擇分組方法是關(guān)鍵.

  (20)對于一個一般形式的二次項系數(shù)為1的二次三項式x2+px+q,如果將常數(shù)項q分解成兩個因數(shù)a,b,而a+b等于一次項系數(shù)P,那么它就可以分解因式.

  即x2+px+q=x2+(a+b)x+ab=(x+a)(x+b)

  這里的關(guān)鍵:掌握a,b與原多項式的常數(shù)項,一次項系數(shù)之間的關(guān)系,這個關(guān)系主要是:ab=q,a+b=p

  八年級上冊數(shù)學(xué)知識點因式分解2

  1.因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數(shù)的最大公約數(shù)?相同因式的最低次冪.

  注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+b)(a-b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

  5.因式分解的.注意事項:

  (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

  (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;

  (4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;

  (5)因式分解的最后結(jié)果要求加以整理;

  (6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:

  (1)換位整理,加括號或去括號整理;

  (2)提負(fù)號;

  (3)全變號;

  (4)換元;

  (5)配方;

  (6)把相同的式子看作整體;

  (7)靈活分組;

  (8)提取分?jǐn)?shù)系數(shù);

  (9)展開部分括號或全部括號;

  (10)拆項或補項.

  7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q,有“x2+px+q是完全平方式?”.

  八年級上冊數(shù)學(xué)知識點因式分解3

  知識要點:因式分解沒有普遍適用的方法,初中數(shù)學(xué)教材中主要介紹了提公因式法、公式法。

  因式分解的方法

  注意三原則

  1.分解要徹底(是否有公因式,是否可用公式)

  2.最后結(jié)果只有小括號

  3.最后結(jié)果中多項式首項系數(shù)為正(例如:-3x^2+x=x(-3x+1))

  4.最后結(jié)果每一項都為最簡因式

  歸納方法:

  1.提公因式法。

  2.公式法。

  3.分組分解法。

  4.湊數(shù)法。[x^2+(a+b)x+ab=(x+a)(x+b)]

  5.組合分解法。

  6.十字相乘法。

  7.雙十字相乘法。

  8.配方法。

  9.拆項補項法。

  10.換元法。

  11.長除法。

  12.求根法。

  13.圖象法。

  14.主元法。

  15.待定系數(shù)法。

  16.特殊值法。

  17.因式定理法。

  基本方法 各項都含有的公共的因式叫做這個多項式各項的公因式,公因式可以是單項式,也可以是多項式。

  如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提取公因式

  具體方法:當(dāng)各項系數(shù)都是整數(shù)時,公因式的系數(shù)應(yīng)取各項系數(shù)的最大公約數(shù)字母取各項的相同的字母,而且各字母的指數(shù)取次數(shù)最低的。當(dāng)各項的系數(shù)有分?jǐn)?shù)時,公因式系數(shù)為各分?jǐn)?shù)的最大公約數(shù)。如果多項式的第一項是負(fù)的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)成為正數(shù)。提出“-”號時,多項式的各項都要變號。

  口訣:找準(zhǔn)公因式,一次要提盡全家都搬走,留1把家守提負(fù)要變號,變形看奇偶。

  例如:-am+bm+cm=-(a-b-c)m

  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。

  注意:把2a+1/2變成2(a+1/4)不叫提公因式

  如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。

  平方差公式: (a+b)(a-b)=a^2-b^2,反過來為a^2-b^2=(a+b)(a-b)

  完全平方公式:(a+b)^2=a^2+2ab+b^2,反過來為a^2+2ab+b^2=(a+b)^2

  (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2

  注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(shù)(或式)的平方和的形式,另一項是這兩個數(shù)(或式)的積的2倍。

  兩根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]

  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

  公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

  例如:a^2+4ab+4b^2 =(a+2b)^2。

  1.分解因式技巧掌握:

 、俜纸庖蚴绞嵌囗検降暮愕茸冃,要求等式左邊必須是多項式

  ②分解因式的結(jié)果必須是以乘積的形式表示

 、勖總因式必須是整式,且每個因式的次數(shù)都必須低于原來多項式的次數(shù)

 、芊纸庖蚴奖仨毞纸獾矫總多項式因式都不能再分解為止。

  注:分解因式前先要找到公因式,在確定公因式前,應(yīng)從系數(shù)和因式兩個方面考慮。

  2.提公因式法基本步驟:

  (1)找出公因式

  (2)提公因式并確定另一個因式:

 、俚谝徊秸夜蚴娇砂凑沾_定公因式的方法先確定系數(shù)再確定字母

  ②第二步提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式

  ③提完公因式后,另一因式的項數(shù)與原多項式的項數(shù)相同。

  知識要領(lǐng)總結(jié):在競賽上,有拆項和添減項法,分組分解法和十字相乘法,待定系數(shù)法,雙十字相乘法,對稱多項式,輪換對稱多項式法,余式定理法,求根公式法,換元法,長除法,短除法,除法等。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點:因式分解

  下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:

 、俳Y(jié)果必須是整式

  ②結(jié)果必須是積的形式

 、劢Y(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:

 、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。

  ②相同字母取最低次冪

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮(fù)號放括號外

  ⑦括號內(nèi)同類項合并。

【八年級上冊數(shù)學(xué)知識點因式分解】相關(guān)文章:

八年級上冊數(shù)學(xué)因式分解知識點01-31

八年級上冊數(shù)學(xué)因式分解復(fù)習(xí)知識點12-10

數(shù)學(xué)因式分解知識點03-08

八年級上冊數(shù)學(xué)《因式分解》期中復(fù)習(xí)知識點03-05

因式分解的數(shù)學(xué)知識點03-08

中考數(shù)學(xué)因式分解的知識點10-04

初二上冊數(shù)學(xué)關(guān)于因式分解的知識點01-25

人教版初三數(shù)學(xué)上冊《因式分解法》知識點總結(jié)07-27

初二數(shù)學(xué)因式分解的知識點01-25