考研數(shù)學(xué)線代沖刺的歷年考點
在考研復(fù)習(xí)的過程中除了把握住大綱上的重難點之外,更最重要的是在做題中訓(xùn)練自己靈活解題的能力。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)線代沖刺階段的知識點,歡迎大家前來閱讀。
考研數(shù)學(xué)線代沖刺階段的重要考點
這段時間考生在做題時要注意以下方面:
一、習(xí)慣思考的能力
閱讀一個知識點,宏觀上思考其在整個數(shù)學(xué)科目中作用及與其他科目之間的聯(lián)系,微觀上思考其本身概念的深度,其具有的特點及滿足的性質(zhì)等等。拿到一個題目,研究其條件與結(jié)論的聯(lián)系,思考題目所在的知識點及可能使用的方法,能否用更多的方法來求解,能否找到最為簡單的方法?礆v年真題,總結(jié)考試題目的規(guī)律,思考命題特點及與考試大綱之間的聯(lián)系。
二、高效解決問題的能力
考試時不僅要正確解答題目,更重要的是要快速的達到目的。現(xiàn)在很多輔導(dǎo)資料對知識點的總結(jié),題型的歸納都比較全面,如果能利用其對知識的歸納再加上自己的邊看邊思考,對知識點達到融會貫通不成問題。
三、快速判斷所考知識點的能力
考研數(shù)學(xué)大綱所規(guī)定的知識點是有限的,重要的知識點就更少一些,但考研數(shù)學(xué)已經(jīng)進行了二十幾年,重點之處年年考,但這些知識點每年都會換上新的外衣,喬裝打扮,使不少考生被蒙蔽,之后悔之不及。
四、持之以恒的能力
數(shù)學(xué)因其高于日常生活而常受到學(xué)生的冷落,這樣就會產(chǎn)生馬太效應(yīng),愈不關(guān)心她,它就離你愈遠(yuǎn),故而考研復(fù)習(xí)需要保持對數(shù)學(xué)熱情,堅持到底!
在考研復(fù)習(xí)中考生要做到的是掌握核心,即萬變不離其宗,抓住其形變而神不變之處才能輕松成功。
考研數(shù)學(xué)沖刺復(fù)習(xí)的指導(dǎo)
擬題卻出得刁鉆古怪沒有權(quán)威性,可做性不高。其實大家可以挑選把歷年真題都綜合起來的,并且附帶詳細(xì)的解題指導(dǎo)和解題步驟的資料。通過真題,大家可以真切體會到考研的重點、難點,重要的是大家可以掌握各種?嫉念}型。通常大家在開始做真題的時候會漏洞百出,不是公式記不清了,就是思路不熟。但大概做到第十套的時候,就已 經(jīng)相當(dāng)順了,自信心也會隨之大增,接下來做模擬題時,你會發(fā)覺自己對數(shù)學(xué)的認(rèn)識有了質(zhì)的`提高。
注意學(xué)科間的聯(lián)系
考研數(shù)學(xué)作為標(biāo)準(zhǔn)化考試,其命題范圍有明確的規(guī)定,所以考生的第一輪復(fù)習(xí)主要就是依據(jù)考試大綱,詳細(xì)了解考試的基本要求、題型、類別和難度特點。對于考試大綱未作要求的內(nèi)容和知識點,考生可以先放一放。因為從歷年試題來看,偏題怪題越來越少,超綱題的題目也在少數(shù),因此沒有必要在這上面浪費過多的時間和精力。需要大家注意的是,考研試題中一般不太可能單獨考察某個知識點,一般都是幾個知識點結(jié)合起來考察考生的綜合分析能力,因此復(fù)習(xí)時就應(yīng)該注意知識點之 間的聯(lián)系,一是學(xué)科內(nèi)部知識點的縱向聯(lián)系,例如微積分中級數(shù)的求和一般都要用到微分或積分。注意三大學(xué)科之間的橫向聯(lián)系,例如概 率試題通常都會用到微積分的知識等等。這些問題都是在綜合練習(xí)中應(yīng)該總結(jié)和注意的地方。數(shù)學(xué)學(xué)科的特點,決定了數(shù)學(xué)考試要想取得好成績就離不開大量有效的 練習(xí)。俗話說“熟能生巧”,對于數(shù)學(xué)的基本概念、公式、結(jié)論等只有在反復(fù)練習(xí)中才能真正理解與鞏固。
考研數(shù)學(xué)歷年真題的考點
第一章行列式,這一塊唯一的重點是行列式的計算,主要有數(shù)值型和抽象型兩類行列式的計算,06、08、10、12年的真題中均有抽象行列式的計算問題,而且均是以填空題的形式出現(xiàn)的,個別的還出現(xiàn)在了大題的第一問中。
第二章矩陣,重點在矩陣的秩、逆、伴隨、初等變換以及初等矩陣、分塊矩陣。這一章概念和運算較多,考點也較多,而且考點以填空和選擇為主,當(dāng)然也會結(jié)合其他章節(jié)的知識考大題。06、09、11、12年均考了一個小題是有關(guān)初等變換與矩陣乘法之間的關(guān)系,10年考了一個小題關(guān)于矩陣的秩,08年考了一道抽象矩陣求逆的問題。
第三章向量,可以分為三個重點,第一個是向量組的線性表示,第二個是向量組的線性相關(guān)性,第三個是向量組的秩及極大線性無關(guān)組。這一章無論是大題還是小題都特別容易出考題,06年以來每年都有一道考題,不是向量組的線性表示就是向量組的線性相關(guān)性的判斷,10年還考了一道向量組秩的問題。
第四章線性方程組,有三個重點。第一個是線性方程組解的判定問題,第二個是解的性質(zhì)問題,第三個是解的結(jié)構(gòu)問題。06年以來只有11年沒有出大題,其他幾年的考題均是含參方程的求解或者是解的判定問題。
第五章矩陣的特征值與特征向量,也是分三個重點。第一個是特征值與特征向量的定義、性質(zhì)以及求法。第二個為矩陣的相似對角化問題,第三是實對稱矩陣的性質(zhì)以及正交相似對角化的問題。實對稱矩陣的性質(zhì)與正交相似對角化問題可以說每年必考,12年、11年、10年09年都考了。
第六章二次型有兩個重點。第一個是化二次型為標(biāo)準(zhǔn)形,同學(xué)們必須掌握兩種方法,第一個是配方法,第二個是正交變換法。第二個重點是正定二次型的判定。11年考的一個小題,用通過正交變換法將二次型化為標(biāo)準(zhǔn)形,12年、11年、10年均以大題的形式出現(xiàn),但主要用的是正交變換化二次型為標(biāo)準(zhǔn)形。
【考研數(shù)學(xué)線代沖刺的歷年考點】相關(guān)文章:
考研數(shù)學(xué)線代和概率的沖刺輔導(dǎo)12-20
考研數(shù)學(xué)復(fù)習(xí)歷年的重要考點12-05
考研數(shù)學(xué)概率統(tǒng)計沖刺的考點12-11
考研數(shù)學(xué)線代的復(fù)習(xí)重點12-05