高一數(shù)學(xué)教學(xué)工作計劃集合十篇
日子如同白駒過隙,不經(jīng)意間,又將迎來新的工作,新的挑戰(zhàn),立即行動起來寫一份計劃吧。什么樣的計劃才是有效的呢?以下是小編為大家整理的高一數(shù)學(xué)教學(xué)工作計劃10篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)教學(xué)工作計劃 篇1
一、指導(dǎo)思想:
本學(xué)期以提高教學(xué)質(zhì)量為目標(biāo),以培養(yǎng)學(xué)生學(xué)習(xí)興趣,增強學(xué)生學(xué)習(xí)能力為中心,以學(xué)生課后訓(xùn)練為重點,以加強優(yōu)化課堂教學(xué)為手段,努力提高思想素質(zhì)和業(yè)務(wù)能力,抓好基礎(chǔ)知識教學(xué),著重培養(yǎng)學(xué)生思維能力,全面提高數(shù)學(xué)成績,為下學(xué)期的成人高考作好充分的準(zhǔn)備。
二、教學(xué)目標(biāo):
(一)知識目標(biāo):
本學(xué)期學(xué)習(xí)三角函數(shù)和平面向量這兩章內(nèi)容。按照讓學(xué)生知書中基本內(nèi)容、讓學(xué)生會練書中的練習(xí)題、讓學(xué)生能獨立做作業(yè)題、讓基礎(chǔ)好點的能做章后總復(fù)習(xí)題的學(xué)習(xí)目標(biāo)要求,以每周四節(jié)課教學(xué)進度,在期中考試前學(xué)習(xí)完三角函數(shù),期中考試之后學(xué)習(xí)平面向量,讓學(xué)生掌握更多的數(shù)學(xué)知識,豐富學(xué)生的數(shù)學(xué)思想。
(二)情感目標(biāo)
(1)加強高中數(shù)學(xué)知識與初中知識的聯(lián)系,注意知識的連貫性,提高學(xué)生對數(shù)學(xué)的認知水平,培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)教學(xué)中加強知識形成的探究,讓學(xué)生體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在學(xué)習(xí)中學(xué)會合作、學(xué)會交流、學(xué)會評價,提高學(xué)生的學(xué)習(xí)趣味性,感受學(xué)習(xí)中的成功樂趣。
(4)加強對學(xué)生的認識和了解,充分滿足學(xué)生的學(xué)習(xí)愿景,采用切實可行的教學(xué)方式,堅定學(xué)生的學(xué)習(xí)信念和學(xué)習(xí)信心,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,增強學(xué)習(xí)的主動性,努力學(xué)習(xí),提高成績。
(5)加強對學(xué)生的學(xué)習(xí)方法的指導(dǎo),培養(yǎng)學(xué)生自主探索與合作交流的學(xué)習(xí)興趣,積累和發(fā)展他們的數(shù)學(xué)情感,積極訓(xùn)練,發(fā)展思維能力。(三)能力目標(biāo)
1、培養(yǎng)學(xué)生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(2)通過揭示三角函數(shù)有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運算能力。
(1)通過三角、向量等題型的訓(xùn)練,培養(yǎng)學(xué)生的.運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。
(3)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移,培養(yǎng)學(xué)生思維的靈活性。
3、培養(yǎng)學(xué)生的理解能力
(1)利用數(shù)形結(jié)合,加強知識間的連通和邏輯關(guān)系的認識,加深知識的理解。
(2加強習(xí)題練習(xí),提高對書本知識的認知和理解,促進學(xué)生運用所學(xué)的知識,提高學(xué)生的理解能力。
三、具體措施
1.期中考前上好三角函數(shù),期中考后完成好平面向量
2.抓好數(shù)學(xué)補差,培優(yōu)活動。
3.立足于教材。
4.要求學(xué)生完成課后練習(xí)及每一章課后習(xí)課
5、還繼續(xù)學(xué)習(xí)了《課堂教學(xué)論》,《現(xiàn)代教育技術(shù)》,努力學(xué)習(xí)多媒體課件的制作。
6、繼續(xù)認真開展教學(xué)研討活動,經(jīng)常聽課交流,認真評課,共同商討教材等。
7、課外活動課的時間,培優(yōu)補差,抓好課后輔導(dǎo),提高學(xué)生成績。時間定于周三、周四。
高一數(shù)學(xué)教學(xué)工作計劃 篇2
本節(jié)課在教材中的地位和作用:《不等式的基本性質(zhì)》,對即將要學(xué)習(xí)的一元一次不等式的解法乃至高中的不等式的運用都是非常重要的基礎(chǔ)。本節(jié)內(nèi)容掌握的好壞,將直接影響到后面的教學(xué)內(nèi)容。而對于不等式的基本性質(zhì)1和2,相信絕大部分的學(xué)生都不會有很大困難,而不等式的基本性質(zhì)3,通過對以往學(xué)生的了解,發(fā)現(xiàn)很多學(xué)生會忘記分正負兩種情況,因此在本節(jié)新課教學(xué)中,我采用了將不等式未知的性質(zhì)與等式已知的性質(zhì)進行類比教學(xué),讓學(xué)生自己去發(fā)現(xiàn)驗證不等式的性質(zhì)。
一、教學(xué)目標(biāo):
(一)知識與技能
1.掌握不等式的三條基本性質(zhì)。
2.運用不等式的基本性質(zhì)對不等式進行變形。
(二)過程與方法
1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會“類比”的數(shù)學(xué)思想。
2.通過觀察、猜想、驗證、歸納等數(shù)學(xué)活動,經(jīng)歷從特殊到一般、由具體到抽象的認知過程,感受數(shù)學(xué)思考過程的條理性,發(fā)展思維能力和語言表達能力。
(三)情感態(tài)度與價值觀
通過探究不等式基本性質(zhì)的活動,培養(yǎng)學(xué)生合作交流的意識和大膽猜想,樂于探究的良好思維品質(zhì)。
二、教學(xué)重難點
教學(xué)重點: 探索不等式的三條基本性質(zhì)并能正確運用它們將不等式變形。
教學(xué)難點: 不等式基本性質(zhì)3的探索與運用。
三、教學(xué)方法:自主探究——合作交流
四、教學(xué)過程:
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
( 1 )若x-4=12, 則x=16()
( 2 )若3x=12, 則 x=4()
( 3 )若x-4>12 則 x>16()
( 4 )若3x>12則 x>4()
【設(shè)計意圖】(1)、(2)小題喚起對舊知識等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學(xué)生大膽說出自己的想法。通過復(fù)習(xí)既找準(zhǔn)了舊知?奎c,又創(chuàng)設(shè)了一種情境,給學(xué)生提供了類比、想象的空間,為后續(xù)學(xué)習(xí)做好了鋪墊。
教師導(dǎo)語:當(dāng)我們開始研究不等式的時候,自然會聯(lián)想到它是否與等式有相類似的性質(zhì)。這節(jié)課我們就通過類比來探究不等式的基本性質(zhì)。
溫故知新
問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?
等式性質(zhì)1:等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。
估計學(xué)生會猜:不等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應(yīng)該重點研究它在方向上的變化。
問題2.你能通過實驗、猜想,得出進一步的結(jié)論嗎?
同桌同學(xué)通過實例驗證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。
問題3.你能由等式性質(zhì)2進一步猜想不等式還具有什么性質(zhì)嗎?
等式性質(zhì)2:等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),等式依然成立。
估計學(xué)生會猜:不等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),不等號的方向不變。
你能和小伙伴一起來驗證你們的猜想嗎?(教師鼓勵學(xué)生實踐是檢驗真理的唯一標(biāo)準(zhǔn)。)
學(xué)生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個數(shù)時,不等號的方向會出現(xiàn)兩種情況。教師進一步引導(dǎo)學(xué)生通過分析、比較探索規(guī)律,從而形成共識,歸納概括出不等式性質(zhì)2和3。
【設(shè)計意圖】猜想作為教學(xué)的出發(fā)點,啟發(fā)學(xué)生積極思維,探索規(guī)律,讓學(xué)生在“做”數(shù)學(xué)中學(xué)數(shù)學(xué),真正成為學(xué)習(xí)的主人。
問題4.在不等式兩邊都乘0會出現(xiàn)什么情況?
問題5.如果a、b、c表示任意數(shù),且a
【設(shè)計意圖】把文字語言轉(zhuǎn)化為數(shù)學(xué)語言,是數(shù)學(xué)學(xué)習(xí)中的一項基本能力,這里有意識地進行滲透,指導(dǎo)學(xué)生先作變形再填不等號,對字母c的取值進行討論,培養(yǎng)學(xué)生的分類意識,對培養(yǎng)學(xué)生的思維能力有十分重要的意義。
【想一想】不等式的'基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?
學(xué)生思考,獨立總結(jié)異同點。
【設(shè)計意圖】引導(dǎo)學(xué)生把二者進行比較,有助于加深對不等式基本性質(zhì)的理解,促成知識的“正遷移”。
綜合訓(xùn)練:你能運用不等式的基本性質(zhì)解決問題嗎?
1、課本62頁例3
教師引導(dǎo)學(xué)生觀察每個問題是由a>b經(jīng)過怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學(xué)生思考后口答。
【設(shè)計意圖】對學(xué)生進行推理訓(xùn)練,讓學(xué)生明白,敘述要有根據(jù),進一步提高學(xué)生的邏輯思維能力和語言表達能力。
2、你認為在運用不等式的基本性質(zhì)時哪一條性質(zhì)最容易出錯,應(yīng)該怎樣記住?
【設(shè)計意圖】及時進行學(xué)習(xí)反思,總結(jié)經(jīng)驗,通過相互評價學(xué)習(xí)效果,及時發(fā)現(xiàn)問題、解決知識盲點,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力。
3.小明的困惑:
小明用不等式的基本性質(zhì)將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?
小明可糊涂了……聰明的同學(xué),你能告訴小軍他究竟錯在什么地方嗎?同桌討論。
【設(shè)計意圖】通過替人排憂解難,強化對不等式三個基本性質(zhì)的理解與運用,突出重點,突破難點。
4.火眼金睛
①a>2, 則3a___2a
②2a>3a,則 a ___ 0
【設(shè)計意圖】通過變式訓(xùn)練,加深學(xué)生對新知的理解,培養(yǎng)學(xué)生分析、探究問題的能力。
課堂小結(jié):
這節(jié)課你有哪些收獲?有何體會?你認為自己的表現(xiàn)如何?教師引導(dǎo)學(xué)生回顧、思考、交流。
【設(shè)計意圖】回顧、總結(jié)、提高。學(xué)生自覺形成本節(jié)的課的知識網(wǎng)絡(luò)。
思考題:你來決策
咱們班的王帥同學(xué)準(zhǔn)備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標(biāo)準(zhǔn)為:大人全價,小孩半價;方正旅行社的標(biāo)準(zhǔn)為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學(xué)考慮一下選擇哪家旅行社更合算嗎?
【設(shè)計意圖】利用所學(xué)的數(shù)學(xué)知識,解決生活中的問題,加強數(shù)學(xué)與生活的聯(lián)系,體驗數(shù)學(xué)是描述現(xiàn)實世界的重要手段。既培養(yǎng)了學(xué)生用數(shù)學(xué)知識解決實際問題的能力,又樹立了學(xué)好數(shù)學(xué)的信心。
高一數(shù)學(xué)教學(xué)工作計劃 篇3
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課。該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化。教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中。同時,通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點間的距離》和選修2—1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系。
學(xué)情分析
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想。這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ)。
教學(xué)目標(biāo)
1、知識與技能
①通過具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
②了解空間直角坐標(biāo)系,掌握空間點的坐標(biāo)的確定方法和過程
、鄹惺茴惐人枷朐谔骄啃轮R過程中的作用
2、過程與方法
、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
、陬惐葘W(xué)習(xí),循序漸進
3、情感態(tài)度與價值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的.作用,不斷地拓展自己的思維空間。
教學(xué)重點
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為“空間直角坐標(biāo)系的理解”。
教學(xué)難點
“通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點的坐標(biāo)”。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發(fā)展得到“空間直角坐標(biāo)系”的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置。總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論。
高一數(shù)學(xué)教學(xué)工作計劃 篇4
本學(xué)期的措施及打算
1.一周學(xué)習(xí)早知道。明確目標(biāo)更能確定努力的方向。為了讓學(xué)生學(xué)習(xí)更有目的性,有效性和積極性,每周第一節(jié)課給出一周的教學(xué)進度,學(xué)習(xí)目標(biāo)和過關(guān)要求。不僅老師要做到對所教內(nèi)容清楚明了,也要讓學(xué)生對所學(xué)內(nèi)容做到每周學(xué)習(xí)目標(biāo)清晰化。
2.落實“每周測試”過關(guān)制。周測內(nèi)容與一周學(xué)習(xí)目標(biāo)及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關(guān)的.學(xué)生將按事先說明的措施給予處罰。以便讓學(xué)生重視課堂學(xué)習(xí),重視平時作業(yè),重視一周的學(xué)習(xí)過程。做到讓學(xué)生每周學(xué)習(xí)過程精細化。
3.根據(jù)學(xué)生學(xué)力狀況進行分層次的培優(yōu)補差。
三、教學(xué)進度安排
周次學(xué)習(xí)內(nèi)容目標(biāo)要求
1必修4 第一章三角函數(shù):第1至3節(jié)周期,角的推廣及表示,弧度制及互化
2軍訓(xùn)
3第4節(jié):正弦函數(shù)單位圓,正弦函數(shù)定義,象限符號,誘導(dǎo)公式,五點法畫圖像,圖像及性質(zhì)。
4第5節(jié):余弦函數(shù),第6節(jié)正切函數(shù)余弦函數(shù)正切函數(shù)定義,象限符號,誘導(dǎo)公式,圖像及性質(zhì)
5第7節(jié): 的圖像,第8節(jié):同角的基本關(guān)系。圖像變換規(guī)律,同角三角函數(shù)的基本關(guān)系及其運用。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
6第二章:平面向量:第1節(jié)至第2節(jié)向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算
7第3節(jié)至第5節(jié)數(shù)乘向量,基本定理,向量運算的鞏固訓(xùn)練,平面向量的坐標(biāo)表示及運算。數(shù)量積的應(yīng)用。
8第5節(jié)至第7節(jié)數(shù)量積的應(yīng)用及坐標(biāo)表示,向量應(yīng)用舉例。習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
9第三章:三角恒等變換:第1節(jié)至第2節(jié)兩角和差的公式得推導(dǎo),記憶及靈活運用,二倍角公式得來源及運用。期中復(fù)習(xí)。
10期中考試期中復(fù)習(xí),期中考試。
11第三章第3節(jié):三角函數(shù)的簡單應(yīng)用試卷講評改錯,簡單應(yīng)用,三角恒等變換的綜合習(xí)題課,練習(xí),章節(jié)復(fù)習(xí),必修4基本測試。
12“五。一”長假
13必修3第一章:統(tǒng)計。第1節(jié)至第5節(jié)統(tǒng)計的程序,統(tǒng)計圖,統(tǒng)計方案設(shè)計,普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計圖表及讀統(tǒng)計圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級差,方差的意義及計算分析,
14第6節(jié)至第9節(jié)樣本對總本的估計及相應(yīng)的數(shù)字特征的計算分析,統(tǒng)計實踐活動,變量的相關(guān)性及例題分析,最小二乘估計。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
15第二章:算法初步:第1節(jié)至第3節(jié)基本思想,基本結(jié)構(gòu)及設(shè)計,排序問題。
16第4節(jié):幾種基本語句條件語句,循環(huán)語句,復(fù)習(xí)三角函數(shù)的基本內(nèi)容,章節(jié)復(fù)習(xí),三角函數(shù)與算法初步過關(guān)測試。
17第三章:概率:第1節(jié)至第2節(jié)頻率,概率,古典概率,概率計算公式。
18第2節(jié)至第3節(jié)建概率模型,互斥事件,習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
19期末復(fù)習(xí)
20期末復(fù)習(xí),期末考試
高一數(shù)學(xué)教學(xué)工作計劃 篇5
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法.針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ).
二、高一上冊數(shù)學(xué)教學(xué)教材特點:
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有如下特點:
1.“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.
2.“問題性”:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.
3.“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比、化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.
4.“時代性”與“應(yīng)用性”:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識.
三、高一上冊數(shù)學(xué)教學(xué)教法分析:
1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的`沖動,以達到培養(yǎng)其興趣的目的.
2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式.
3.在教學(xué)中強調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.
四、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負眾望.我們要從學(xué)生的認識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.
五、高一上冊數(shù)學(xué)教學(xué)教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步.
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.
高一數(shù)學(xué)教學(xué)工作計劃 篇6
本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用。教學(xué)重點是指數(shù)函數(shù)的圖像與性質(zhì)。
I這是指數(shù)函數(shù)在本章的位置。
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù)。它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐。指數(shù)函數(shù)的學(xué)習(xí),一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ)。因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗數(shù)學(xué)思想與方法應(yīng)用的過程。
指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實意義。
、颍虒W(xué)目標(biāo)設(shè)置
1。學(xué)生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念。
2。學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小。
3。學(xué)生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法。
4。在探究活動中,學(xué)生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力。
、螅畬W(xué)生學(xué)情分析
授課班級學(xué)生為南京師大附中實驗班學(xué)生。
1。學(xué)生已有認知基礎(chǔ)
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認識。學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力。學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗。學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣。
2。達成目標(biāo)所需要的認知基礎(chǔ)
學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函數(shù)的一般方法的認識。
2。 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面。
突破策略:
1。教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認識研究的目標(biāo)與手段。
2。組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思。
3。對猜想進行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合。
、簦虒W(xué)策略設(shè)計
根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式。通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段。
學(xué)生的自主學(xué)習(xí),具體落實在三個環(huán)節(jié):
(1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念。
(2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升。
(3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用。
研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開。從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的'過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明。
Ⅴ.教學(xué)過程設(shè)計
1。創(chuàng)設(shè)情境建構(gòu)概念
師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系。你能用函數(shù)的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規(guī)律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應(yīng)的細胞個數(shù)為y,如何描述這兩個變量的關(guān)系?
[情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%。如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?
[師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0。84x。
師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?
〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?
[設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系。引導(dǎo)學(xué)生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示。初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu)。指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0。a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義。為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”。
[師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax。
[教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0。5x…。如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn)。進而提出這類函數(shù)一般形式y(tǒng)=ax。
、觯毯蠓此蓟仡
一、對于指數(shù)函數(shù)概念的認識
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置。底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì)。不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想。
二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣。實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習(xí)慣。對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進行證明或合理的說明。學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗了研究問題的基本方法。
三、關(guān)于設(shè)計定位的反思
本節(jié)課的教學(xué)設(shè)計,力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略。如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程。
高一數(shù)學(xué)教學(xué)工作計劃 篇7
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的'教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實課外活動的內(nèi)容。組織和加強數(shù)學(xué)興趣小組的活動內(nèi)容。
三、教學(xué)內(nèi)容
第一章集合與函數(shù)概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
9.在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時分配(14課時)
1.1.1 | 集合的含義與表示 | 約1課時 | 9月1日 |
1.1.2 | 集合間的基本關(guān)系 | 約1課時 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運算 | 約2課時 | |
小結(jié)與復(fù)習(xí) | 約1課時 | ||
1.2.1 | 函數(shù)的概念 | 約2課時 | |
1.2.2 | 函數(shù)的表示法 | 約2課時 | 9月13日 | | 9月25日 |
1.3.1 | 單調(diào)性與最大(。┲ | 約2課時 | |
1.3.2 | 奇偶性 | 約1課時 | |
小結(jié)與復(fù)習(xí) | 約2課時 |
第二章基本初等函數(shù)(I)
1.通過具體實例,了解指數(shù)函數(shù)模型的實際背景。
2.理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。
3。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。
4.在解決簡單實際問題過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。
5。理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運算的作用。
6。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點。
7.通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 | 引言、指數(shù)與指數(shù)冪的運算 | 約3課時 | 9月27日30日 |
2.1.2 | 指數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月8日10日 |
2.2.1 | 對數(shù)與對數(shù)運算 | 約3課時 | 10月11日14日 |
2.2.2 | 對數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月15日18日 |
2.3 | 冪函數(shù) | 約1課時 | 10月19日24日 |
小結(jié) | 約2課時 |
第三章函數(shù)的應(yīng)用
1。結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
3。收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
4。根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數(shù)的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數(shù)模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實例 | 約2課時 | |
小結(jié) | 約1課時 |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點、難點、易錯點,各個擊破,夯實基礎(chǔ),規(guī)范答題,一定會穩(wěn)中求進,取得優(yōu)異的成績。
高一數(shù)學(xué)教學(xué)工作計劃 篇8
教學(xué)計劃可以幫助教師理清教學(xué)思路,提高課堂效率。
●教學(xué)目標(biāo)
(一)教學(xué)知識點
1.了解全集的意義.
2.理解補集的概念.
(二)能力訓(xùn)練要求
1.通過概念教學(xué),提高學(xué)生邏輯思維能力.
2.通過教學(xué),提高學(xué)生分析、解決問題能力.
(三)德育滲透目標(biāo) 滲透相對的觀點.
●教學(xué)重點 補集的概念.
●教學(xué)難點
補集的有關(guān)運算.
●教學(xué)方法 發(fā)現(xiàn)式教學(xué)法 通過引入實例,進而對實例的分析,發(fā)現(xiàn)尋找其一般結(jié)果,歸納其普遍規(guī)律.
●教具準(zhǔn)備
第一張:(記作1.2.2 A)
●教學(xué)過程 Ⅰ.復(fù)習(xí)回顧
1.集合的子集、真子集如何尋求?其個數(shù)分別是多少? 2.兩個集合相等應(yīng)滿足的條件是什么?
、.講授新課 [師]事物都是相對的,集合中的`部分元素與集合之間關(guān)系就是部分與整體的關(guān)系.
請同學(xué)們由下面的例子回答問題: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分
由此借助上圖總結(jié)規(guī)律如下: 投影片:(1.2.2 B)
、.課時小結(jié)
1.能熟練求解一個給定集合的補集.
2.注意一些特殊結(jié)論在以后解題中的應(yīng)用. Ⅴ.課后作業(yè)
高一數(shù)學(xué)教學(xué)工作計劃 篇9
教學(xué)目標(biāo)
1通過對冪函數(shù)概念的學(xué)習(xí)以及對冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。
2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運用所學(xué)知識解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。
3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學(xué)重點、難點
重點:冪函數(shù)的性質(zhì)及運用
難點:冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程
教學(xué)方法:問題探究法 教具:多媒體
教學(xué)過程
一、創(chuàng)設(shè)情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進了 km,那么他騎車的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的'形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個冪函數(shù)?
、 y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學(xué)生獨立思考、回答)
2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?
(學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)
3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時,其表達式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強調(diào),當(dāng)x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導(dǎo)學(xué)生具體問題具體分析,并作簡單歸納:分數(shù)指數(shù)應(yīng)化成根式,負指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學(xué)生思考,引導(dǎo)作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1
讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴密性。)
教師總評:冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質(zhì)?
學(xué)生思考,教師講評:(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習(xí) 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡單應(yīng)用1:比較下列各組中兩個值的大小,并說明理由:
①0.75 ,0.76 ;
、(-0.95) ,(-0.96) ;
、0.23 ,0.24 ;
、0.31 ,0.31
例5簡單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡單應(yīng)用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結(jié)
今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學(xué)教學(xué)工作計劃 篇10
教材分析:
解不等式是不等式學(xué)習(xí)的主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點,也是學(xué)習(xí)的難點。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運用于其它數(shù)學(xué)知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實際思維及思路。
學(xué)情分析:
初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗。同時,對于二次方程,二次函數(shù)等相關(guān)知識學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。
學(xué)生心理方面,學(xué)習(xí)積極性較高,對數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強的學(xué)習(xí)動機——考上大學(xué),盡管是外在的誘因。
教學(xué)目標(biāo):
、僦R與技能
熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會兩種方法求出一元二次不等式的解集
、谶^程與方法
經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會學(xué)習(xí)
、矍楦、態(tài)度及價值觀
在上述過程中,體驗成功,激發(fā)了對數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對數(shù)學(xué)學(xué)習(xí)的積極情感,增強了學(xué)習(xí)的內(nèi)在動機
教學(xué)重點:
一元二次不等式的解法
教學(xué)難點:
解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設(shè)計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個環(huán)節(jié):
首先,對平面曲線上點的橫坐標(biāo)與縱座標(biāo)之間的對應(yīng)關(guān)系表現(xiàn)陌生,進而對它們的取值變化情況感到費解。
其次,是差生的'思維能力尚處于“經(jīng)驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標(biāo)取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識的角度而言,“沒有教不好的學(xué)生,只有不會教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學(xué)科任何年齡段的任何知識。
教學(xué)程序:
一、復(fù)習(xí)一元一次不等式及不等式組的解法
以題組形式設(shè)計習(xí)題
、2x+3>7
、诓坏仁浇M
③ax>b
二、創(chuàng)設(shè)二次不等式的生活背景實例,引入課題
采用課本上的實例,有關(guān)網(wǎng)絡(luò)收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。
由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導(dǎo)學(xué)生自行歸納、體驗及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計相應(yīng)習(xí)題。
(2)
采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學(xué)生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵他們通過或獨立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。
反思:根據(jù)課堂反饋,二個班級大約有70%的同學(xué)能夠勝任這個任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進行了一次講解,特別加強了對“識圖”環(huán)節(jié)的講解力度,力求突破難點。
四、練習(xí)環(huán)節(jié)
可以說,即使到了高三,仍然有不少同學(xué)對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對于技能的學(xué)習(xí)及掌握,關(guān)鍵是強化練習(xí),“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習(xí)題。對于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨立練習(xí)。
五、課堂小結(jié)
知識,思想、方法及感悟等
六、課后作業(yè)
、僮鳂I(yè)設(shè)計:分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時結(jié)論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設(shè)計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時,加強變式教學(xué),可以充分拓展習(xí)題的潛在價值,期望實現(xiàn)“舉一反三”的目標(biāo)。
【高一數(shù)學(xué)教學(xué)工作計劃】相關(guān)文章:
高一數(shù)學(xué)教學(xué)工作計劃06-09
高一數(shù)學(xué)教學(xué)工作計劃06-03
高一數(shù)學(xué)教學(xué)經(jīng)典設(shè)計08-04
高一數(shù)學(xué)教學(xué)總結(jié)01-08
高一數(shù)學(xué)教學(xué)總結(jié)08-09
高一數(shù)學(xué)的教學(xué)總結(jié)02-05