亚洲一级免费看,特黄特色大片免费观看播放器,777毛片,久久久久国产一区二区三区四区,欧美三级一区二区,国产精品一区二区久久久久,人人澡人人草

圓柱的體積教學(xué)反思

時(shí)間:2025-05-31 21:53:57 教學(xué)反思 我要投稿

圓柱的體積教學(xué)反思(15篇)

  作為一位剛到崗的人民教師,我們需要很強(qiáng)的課堂教學(xué)能力,借助教學(xué)反思我們可以拓展自己的教學(xué)方式,那么優(yōu)秀的教學(xué)反思是什么樣的呢?下面是小編整理的圓柱的體積教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

圓柱的體積教學(xué)反思(15篇)

圓柱的體積教學(xué)反思1

  一、讓操作更詳實(shí),留下思考的痕跡

  動(dòng)手實(shí)踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實(shí)踐操作中探究發(fā)現(xiàn)規(guī)律,從感性到理性,從實(shí)踐到認(rèn)識(shí),從具體到抽象,引導(dǎo)學(xué)生積極動(dòng)手動(dòng)腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解和掌握。尤其是對(duì)于幾何知識(shí)的學(xué)習(xí),課堂教學(xué)中的動(dòng)手操作就顯得更加重要。究竟自己在教學(xué)的時(shí)候是否用好了學(xué)生的操作,讓學(xué)生對(duì)操作的過程有深刻的體會(huì)與認(rèn)識(shí),在操作中是否激起了學(xué)生的思考。留下自己思考的`痕跡,為進(jìn)一步探索知識(shí)做好準(zhǔn)備。

  二、讓觀察更細(xì)致,尋找知識(shí)的聯(lián)系

  數(shù)學(xué)觀察力,是新課標(biāo)中對(duì)提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會(huì)觀察,挖掘知識(shí)之間的聯(lián)系,真正體現(xiàn)操作的價(jià)值。通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識(shí)的探索過程中有一個(gè)完成的體驗(yàn)過程,也對(duì)所學(xué)的知識(shí)有一個(gè)更好的理解。

  三、讓探索更深入,渴求方法的掌握

  如果我們?cè)诮虒W(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗(yàn)積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時(shí)會(huì)更加的自然而然,也能順利的實(shí)現(xiàn)知識(shí)的正遷移。因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識(shí)經(jīng)驗(yàn)的同時(shí)

圓柱的體積教學(xué)反思2

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出“數(shù)學(xué)教學(xué)要讓學(xué)生經(jīng)歷知識(shí)的形成過程”;“通過義務(wù)教育階段的學(xué)習(xí),學(xué)生能夠初步學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實(shí)社會(huì),去解決日常生活和其它學(xué)科學(xué)習(xí)中的問題,增加應(yīng)用數(shù)學(xué)的意識(shí)”。不難發(fā)現(xiàn)新課標(biāo)注重的不只是讓學(xué)生掌握學(xué)習(xí)中的結(jié)論,更關(guān)注的是他們個(gè)性的體驗(yàn),在學(xué)生主動(dòng)參與、實(shí)踐交流、合作探究中去經(jīng)歷知識(shí)形成的過程,通過不斷地發(fā)現(xiàn)問題、提出問題、分析問題、解決問題,積累生活中的經(jīng)驗(yàn),培養(yǎng)應(yīng)用數(shù)學(xué)的能力,體驗(yàn)數(shù)學(xué)的樂趣,感受數(shù)學(xué)在生活中的應(yīng)用價(jià)值。為此,在本小節(jié)的教學(xué)中我著重做了以下幾點(diǎn):

  一、創(chuàng)設(shè)問題情境,激發(fā)學(xué)生求知興趣。

  學(xué)習(xí)圓柱的體積我是這樣創(chuàng)設(shè)情境:1、長(zhǎng)方體、正方體的體積是怎樣求的?(根據(jù)學(xué)生回答統(tǒng)一為v=sh)2、圓的面積是怎樣推導(dǎo)的?(化曲為直)3、如何求出圓柱的體積?能否借助于學(xué)過的知識(shí)和方法來(lái)推導(dǎo)圓柱的體積計(jì)算方法?一系列問題情境的創(chuàng)設(shè),既有復(fù)習(xí)讓學(xué)生做好知識(shí)上的儲(chǔ)備,以便探求新知,又有一定的.指導(dǎo)性、幫助性、鼓勵(lì)性,容易激發(fā)學(xué)生求知的興趣,調(diào)動(dòng)學(xué)生參與學(xué)習(xí)的熱情,同時(shí)也便于學(xué)生掌握學(xué)習(xí)的方向,不致于在下面的學(xué)習(xí)過程中顯得無(wú)所適從。

  二、預(yù)設(shè)開放情境,引發(fā)學(xué)生操作欲望。

  圓柱的體積公式推導(dǎo)教材上編排的只是一種擺放的方式,有一定的局限性,容易限制學(xué)生的思維,也容易引起學(xué)生想入非非。此處是教學(xué)中很好的生成資源,是引發(fā)學(xué)生操作、探究、解決心中疑問的切入點(diǎn)。教學(xué)中,我并沒有一味的按書本的方式讓學(xué)生去擺放長(zhǎng)方體,而是為學(xué)生預(yù)設(shè)一種開放的情境:把圓柱體切開后,拼成的長(zhǎng)方體有哪幾種擺放的方式?它們的底面積和高與圓柱的哪些部有關(guān)系?一石激起千層浪,學(xué)生小組操作興趣盎然,通過擺一擺、放一放、找一找、說一說,學(xué)生發(fā)現(xiàn)無(wú)論豎放、立放還是平放,從哪個(gè)角度思考,均能得到圓柱體積的計(jì)算公式為v=sh,學(xué)生大呼神奇。是的,這就是數(shù)學(xué)的魅力,這就是學(xué)生在經(jīng)歷知識(shí)形成過程中所獲得成功的樂趣,學(xué)生親身感受到數(shù)學(xué)的美,領(lǐng)略到數(shù)學(xué)天地中的風(fēng)光無(wú)限,這是學(xué)生最開心的,也是課堂教學(xué)應(yīng)追求的精彩。

  三、增設(shè)創(chuàng)新情境,誘發(fā)學(xué)生探究動(dòng)機(jī)。

  在圓柱體積應(yīng)用的教學(xué)中,教材中的例5是求物體的容積,計(jì)算結(jié)果要求保留一位小數(shù)(26847立方厘米≈26.8立方分米),教材在編寫的時(shí)候可能沒注意到容積計(jì)算應(yīng)如何取近似值,而例題的設(shè)計(jì)又偏偏正好是“四舍”,忽略了生活中的一些實(shí)際情況,此處容易給學(xué)生造成知識(shí)上的欠缺,為此在教學(xué)中,我結(jié)合前面已學(xué)過的“進(jìn)一法”,為學(xué)生增設(shè)了一個(gè)情境:如果要求得數(shù)保留整數(shù),值應(yīng)取多少?有的學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)進(jìn)行討論,有的學(xué)生聯(lián)系生活實(shí)際說明理由,討論很是激烈,個(gè)個(gè)爭(zhēng)得面紅耳赤,借助交流的機(jī)會(huì),老師給予適當(dāng)?shù)狞c(diǎn)拔和引導(dǎo),學(xué)生終究明白“四舍五入法”、“進(jìn)一法”、“去尾法”的不同用處。課書沒有出現(xiàn)的知識(shí),學(xué)生通過自己的研究與探索獲得,內(nèi)心的喜悅是無(wú)法比擬的,學(xué)生探究問題意識(shí)增強(qiáng)的同時(shí),隨之創(chuàng)新能力也得到了不斷的發(fā)展。

  教育家第斯多惠曾說:“教學(xué)的藝術(shù)不僅僅在于傳授本領(lǐng),而在于激勵(lì)、呼喚、鼓勵(lì)!笔聦(shí)上,學(xué)生對(duì)力所能及而又需要親身探究的問題最感興趣,因此,老師在教學(xué)中應(yīng)根據(jù)教學(xué)內(nèi)容、教學(xué)需要,適當(dāng)調(diào)整教材,加工教材,合理創(chuàng)設(shè)有效的教學(xué)情境去啟發(fā)學(xué)生的思維,鼓勵(lì)學(xué)生創(chuàng)新,激勵(lì)學(xué)生探索,呼喚學(xué)生學(xué)習(xí)積極性。

圓柱的體積教學(xué)反思3

  一、導(dǎo)入時(shí),要突破教材,要有所創(chuàng)新

  在進(jìn)行圓柱的體積的導(dǎo)入時(shí),課本上是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來(lái)計(jì)算”,那么再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜,《圓柱體積》教學(xué)反思。

  猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn),理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,我認(rèn)為,不妨在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。

  二、 新課時(shí),要實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí)

  根據(jù)課標(biāo)要求:學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營(yíng)造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份,還可以再多一些),然后把圓柱切開,照課本上的圖拼起來(lái),圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生如果沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營(yíng)造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的.投入和積極的情感投入,所以,課堂效果差就可想而知了。

  三、 練習(xí)時(shí),要形式多樣,層層遞進(jìn)

  例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無(wú)策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計(jì)算圓柱體積的方法。練習(xí)方式可以是填空、選擇、判斷、看圖計(jì)算、應(yīng)用題等。達(dá)到掌握。

圓柱的體積教學(xué)反思4

  一、擺脫情境困擾,追求簡(jiǎn)單高效

  圓柱的體積教學(xué)是小學(xué)幾何知識(shí)的重頭戲,教學(xué)這節(jié)課時(shí),我首先搜集了網(wǎng)上的大量課例,想尋找一些靈感來(lái)裝飾這節(jié)課的開頭——?jiǎng)?chuàng)設(shè)怎樣的情境才能新穎又能夠?yàn)檎?jié)課的教學(xué)服務(wù)呢?想了好幾套方案最后還是采用創(chuàng)設(shè)情景,由圓柱體水杯裝水,引出圓柱體,再由圓柱體水的體積引出圓柱體體積的求法。板書“圓柱的體積”課本是先讓學(xué)生回憶“長(zhǎng)方體,正方體的體積都可以用它們的底面積乘高來(lái)計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。我認(rèn)為,首先應(yīng)復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,接著在回憶了長(zhǎng)方體,正方體體積計(jì)算方法之后,再接著探究。這樣由平面圖形到立體圖形,過度自然、流暢,便于學(xué)生的思維走向正確方向,這時(shí)教師的引導(dǎo)才是行之有效的。

  二、建立切拼表象,滲透極限思想

  學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。讓學(xué)生分組試驗(yàn)探究,接著再結(jié)合多媒體演示讓學(xué)生感受,把圓柱的底面分的份數(shù)越多,切開后拼起來(lái)的`圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。我使用了—————把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長(zhǎng)方體,展示切拼過程。讓學(xué)生一目了然。

  三、練習(xí)層層遞進(jìn),弱化繁瑣計(jì)算

  為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。通過反思,我概括出四種類型:

  1、已知圓柱底面積(s)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh。

  2、已知圓柱底面半徑(r)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πr2 h。

  3、已知圓柱底面直徑(d)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2 h。

  4、已知圓柱底面周長(zhǎng)(c)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2 h。

  在鞏固練習(xí)中,只要從這四種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計(jì)算圓柱體積的方法。課堂上的時(shí)間有限,課本的標(biāo)注也有:今后涉及圓柱圓錐的計(jì)算可以使用計(jì)算器。所以這節(jié)課教學(xué)時(shí)基本沒有讓學(xué)生參與繁瑣的計(jì)算,學(xué)生學(xué)的也很輕松。

圓柱的體積教學(xué)反思5

  對(duì)《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個(gè)性的教學(xué)風(fēng)格。在我看來(lái),盡管是同課異構(gòu),盡管是個(gè)性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持?jǐn)?shù)學(xué)的邏輯嚴(yán)密性,等等。

  對(duì)于這節(jié)教材的理解,最嚴(yán)重的分歧可能來(lái)自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個(gè):一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負(fù)擔(dān)。事實(shí)上,V=Sh也確實(shí)更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進(jìn)一步描述了它們的不同的S罷了。另一個(gè)原因,是為方便學(xué)生對(duì)公式推導(dǎo)過程的理解。當(dāng)圓柱被分割為有限個(gè)曲面三棱柱并拼為準(zhǔn)長(zhǎng)方體時(shí),半徑r只是接近而并沒有等于長(zhǎng)方體的寬,只有這個(gè)分割被無(wú)限化(取極限)時(shí),圓柱的半徑才能與長(zhǎng)方體的寬相等。因此,與其讓學(xué)生去費(fèi)解地或不求甚解地觀察“長(zhǎng)方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來(lái),這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對(duì)新教材理解不到位的緣故。

  對(duì)于這節(jié)課的異構(gòu),分歧最大的地方可能是對(duì)探索或計(jì)算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗(yàn)證)展開,其第一課時(shí)的教學(xué)重點(diǎn)無(wú)疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認(rèn)為,主要有兩個(gè):一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長(zhǎng)方體,二是驗(yàn)算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗(yàn)。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長(zhǎng)量,證明體積計(jì)算的正確性。也可以將圓柱體形狀的橡皮泥捏成長(zhǎng)方體形狀,如果能夠在變形的過程中保持高的.不變,則可以直接證明所猜想公式的正確性,否則,就要通過計(jì)算來(lái)作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗(yàn)證猜想。之所以這樣認(rèn)為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來(lái)看,用‘底面積乘高’可以計(jì)算出圓柱的體積!倍皇钦f圓柱的體積就是底面積乘高’。二是如果作為驗(yàn)證方法,在邏輯上就犯了循環(huán)論證的錯(cuò)誤,因?yàn)橛矌疟旧韺?shí)際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗(yàn)證的。馮老師在教學(xué)中將其處理為“無(wú)數(shù)個(gè)圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認(rèn)為,由于“堆硬幣”的目的在于換一個(gè)角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時(shí),“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準(zhǔn)長(zhǎng)方體”之后,可以引導(dǎo)學(xué)生觀察這個(gè)長(zhǎng)方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。

圓柱的體積教學(xué)反思6

  本節(jié)課為練習(xí)課,目的在于鞏固學(xué)生前面幾個(gè)課時(shí)的學(xué)習(xí)內(nèi)容和發(fā)現(xiàn)學(xué)生存在的一些問題,然后及時(shí)調(diào)整或補(bǔ)充教學(xué)方案。本節(jié)課在教學(xué)過程中,發(fā)現(xiàn)學(xué)生存在的問題主要有:學(xué)生對(duì)圓柱的側(cè)面展開圖的相關(guān)知識(shí)理解不深入;在計(jì)算的過程中,單位名稱用錯(cuò),如體積單位寫成面積單位;對(duì)于某些實(shí)際問題不能正確分辨圓柱直徑、半徑以及圓柱的高,導(dǎo)致做題出錯(cuò)。對(duì)于這些問題,我們可以通過以下方法來(lái)突破:

  第一,我們?cè)诩兄v解時(shí)可穿插一些單位換算的練習(xí)等,從而避免學(xué)生誤用單位名稱;

  第二,在計(jì)算以長(zhǎng)方形的一邊為軸旋轉(zhuǎn)得到的圓柱體積和計(jì)算直接將長(zhǎng)方形卷成的圓柱體積之前,我們可先組織學(xué)生自己動(dòng)手操作、觀察比較,讓學(xué)生們自己發(fā)現(xiàn)圓柱與長(zhǎng)方體各部分之間的.關(guān)系。

  總而言之,我們?cè)谝龑?dǎo)學(xué)生參與到探索知識(shí)的發(fā)生、發(fā)展過程中,應(yīng)注重突破以往單一、被動(dòng)的學(xué)習(xí)方式。

圓柱的體積教學(xué)反思7

  學(xué)生進(jìn)行圓柱體積公式探究時(shí),由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了個(gè)別學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來(lái)的圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,從而推導(dǎo)出圓柱體積的計(jì)算公式。

  非常遺憾的`是學(xué)生基本沒有親身參與操作,。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長(zhǎng)方體 ,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.

圓柱的體積教學(xué)反思8

  圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來(lái)到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。在圓的體積公式推導(dǎo)過程中,給予學(xué)生足夠的時(shí)間和空間,激發(fā)學(xué)生的探究的欲望,培養(yǎng)學(xué)生的空間想象力。我把圓柱體拼成一個(gè)長(zhǎng)方體,就是把一個(gè)新圖形轉(zhuǎn)換成一個(gè)我們學(xué)習(xí)過的圖形,通過討論,爭(zhēng)鳴從而得出比較深層的數(shù)學(xué)知識(shí),這種思維的火花,我們老師應(yīng)及時(shí)捕捉,讓它開得絢麗多彩,從而讓學(xué)生的個(gè)性能得到充分的培養(yǎng)。讓學(xué)生老師這樣才能寓教于樂,從而達(dá)到了事半功倍的效果。在教此內(nèi)容時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:

  一、展示知識(shí)的發(fā)生過程,讓學(xué)生在參與中學(xué)習(xí)。

  現(xiàn)代教育認(rèn)為課堂教學(xué)首先不是知識(shí)的傳遞過程,而是學(xué)生的發(fā)展過程;首先不是教師的教授過程,而是學(xué)生的學(xué)習(xí)過程;首先不是教師教會(huì)的過程,而是學(xué)生學(xué)會(huì)的過程。展開部分,首先讓學(xué)生大膽猜想,圓柱體的體積可能等于什么?大部分學(xué)生猜測(cè)圓柱體的`體積可能等于底面積×高。在驗(yàn)證圓柱的體積是否與圓柱的底面積和高有關(guān)的過程中,我讓兩名學(xué)生到臺(tái)上演示,學(xué)生興致很高,都想到臺(tái)上進(jìn)行操作,被選出進(jìn)行演示的學(xué)生非常認(rèn)真地進(jìn)行操作,而其他學(xué)生也是非常認(rèn)真的進(jìn)行觀察。因此推導(dǎo)得出圓柱體積公式時(shí),學(xué)生感到非常好懂,也學(xué)得很輕松。

  二、在討論交流中學(xué)習(xí)。

  通過實(shí)驗(yàn)驗(yàn)證之后,讓學(xué)生看課件后,小小組進(jìn)行了如下討論:

 。ǎ保┢闯傻慕崎L(zhǎng)方體體積與原來(lái)的圓柱體積有什么關(guān)系?

  (2)拼成的近似長(zhǎng)方體的底面積與原來(lái)的圓柱底面積有什么關(guān)系?

 。ǎ常┢闯傻慕崎L(zhǎng)方體的高與原來(lái)的圓柱高有什么關(guān)系?這樣不僅為學(xué)生提供動(dòng)手操作、觀察以及交流討論的平臺(tái),而且有利于學(xué)生克服膽怯的心理障礙,大膽參與,發(fā)揮學(xué)生的主動(dòng)性,同時(shí)還能增強(qiáng)

  團(tuán)隊(duì)協(xié)作意識(shí)。在這一環(huán)節(jié)中,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。

  本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:學(xué)生親身體驗(yàn)的感受不夠,因?yàn)閳A柱體積演示器只有一套,所以,只能是個(gè)別學(xué)生進(jìn)行操作,大部分學(xué)生只能遠(yuǎn)距離觀察。有些學(xué)生因看得不清楚而觀察、思考得不正確。如果條件允許,演示器多一些,能讓學(xué)生人人都進(jìn)行操作,我想學(xué)生的參與率、學(xué)生動(dòng)手能力、學(xué)生的觀察與思考、教學(xué)效果都會(huì)更好。

圓柱的體積教學(xué)反思9

  優(yōu)點(diǎn):

  我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。這樣設(shè)計(jì)我覺得能突破難點(diǎn),課堂效果很好。

  不足:

  由于學(xué)生的學(xué)具有限,在很大程度上阻礙了學(xué)生主動(dòng)探究的欲望和動(dòng)手操作的'能力,加上本人能力有限,語(yǔ)言組織能力不是很好,使課堂氣氛不是那么活躍,課堂顯得有些壓抑

  再教設(shè)想:

  在課的設(shè)計(jì)上以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,在學(xué)生動(dòng)手實(shí)踐、交流討論和思考的時(shí)間上教師應(yīng)合理把握。

圓柱的體積教學(xué)反思10

  圓柱的體積是幾何知識(shí)的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長(zhǎng)方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。從本節(jié)課教學(xué)目標(biāo)的達(dá)成來(lái)看,較好地體現(xiàn)了以下幾方面:

  一、注重知識(shí)之間的內(nèi)在聯(lián)系。

  圓柱的體積的導(dǎo)入,先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來(lái)計(jì)算”,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的,并讓學(xué)生建立起更深層的空間幾何概念。

  二、引導(dǎo)學(xué)生經(jīng)歷知識(shí)探究的全過程。

  數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的.數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把柱轉(zhuǎn)化成長(zhǎng)方體。那么怎樣來(lái)切割呢?此時(shí)利用生活中的“蘿卜”引導(dǎo)學(xué)生思考。同學(xué)們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過思考得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長(zhǎng)方體。并利用多媒體動(dòng)畫演示,重現(xiàn)推導(dǎo)過程加深學(xué)生印象。同學(xué)們?cè)诓僮鳌⒈容^中,圍繞圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí)——公式)。

  三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。

  “學(xué)會(huì)學(xué)習(xí)”是對(duì)學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識(shí),更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會(huì)到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。

  本課中還存在很多不足在例如探究過程中沒有充分的給予學(xué)生說一說、指一指的時(shí)間,在引導(dǎo)學(xué)生思考已知圓柱底面半徑(r)和高(h)、已知圓柱底面直徑(d)和高(h)、已知圓柱底面周長(zhǎng)(c)和高(h)三種情況時(shí),教師引導(dǎo)過多,應(yīng)給予學(xué)生更充分的思考空間,讓其考慮如果沒有底面積,知道哪個(gè)條件也可以求圓柱體積。最后,在練習(xí)中缺少反饋,學(xué)生做完練習(xí)后,應(yīng)及時(shí)做到直觀反饋,總結(jié)優(yōu)缺點(diǎn),指導(dǎo)學(xué)生做題。

圓柱的體積教學(xué)反思11

  圓柱的體積教學(xué)反思

  在這節(jié)課學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來(lái)的圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的.長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生基本沒有親身參與操作,非常遺憾。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長(zhǎng)方體,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.,學(xué)習(xí)效果還可以。

  圓柱的體積練習(xí)課教學(xué)反思

  本節(jié)的練習(xí),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識(shí)的特點(diǎn)。運(yùn)用已有的知識(shí)經(jīng)驗(yàn)解決新的問題,在新舊知識(shí)的聯(lián)系上,使學(xué)生想象合理、聯(lián)系有方。

圓柱的體積教學(xué)反思12

  圓柱的體積計(jì)算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過觀察,作出猜測(cè):

 。1)圓柱的體積等于長(zhǎng)方體和正方體的體積。

 。2)圓柱的體積也等于底面積乘高。猜測(cè)是否準(zhǔn)確呢?

  點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的'長(zhǎng)方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。首先我對(duì)這種方法加以肯定,然后利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

圓柱的體積教學(xué)反思13

  在上圓柱體積公式前,我精心備課,準(zhǔn)備好教具,課堂上把教給學(xué)生,讓他們四人一小組,去合作演示,充分討論探索,我在教室里引導(dǎo)學(xué)生總結(jié)歸納;圓柱體能拼成近似的長(zhǎng)方體,長(zhǎng)方體的底面積等于圓柱體的底面積,長(zhǎng)方體的高就是圓柱的高。因此,長(zhǎng)方體的體積就是圓柱的體積,從而推導(dǎo)出V=sh.學(xué)生在課堂中合作十分融洽,我自己也覺得這堂課設(shè)計(jì)得非常不錯(cuò),按照備課的程序,接下來(lái)就是加深學(xué)生對(duì)公式的運(yùn)用、鞏固。突然,一雙小手高高舉起“老師,我有不同方法計(jì)算圓柱的體積”我一愣,備課時(shí)根本沒有考慮到用其它方法;我靈機(jī)一動(dòng),對(duì),讓他說出自己的方法,這位同學(xué)用V=ch/2r,即圓柱側(cè)面積的一半乘以底面半徑,我當(dāng)時(shí)沒有下結(jié)論,把這個(gè)“球”踢給學(xué)生,讓他們一起探討這種說法是否正確;不久學(xué)生都異口同聲的肯定了。這種新穎的創(chuàng)新思維,課堂上響起了熱烈的掌聲。

  這堂課后,我的心久久不能平靜,學(xué)生獨(dú)特見解、探索,使我看到學(xué)生的創(chuàng)新潛力是巨大的,重在教師的開發(fā)、引導(dǎo)!皠(chuàng)新是一個(gè)民族的靈魂,是一個(gè)國(guó)家興旺發(fā)達(dá)的不竭動(dòng)力!痹诮虒W(xué)中,孩子們的創(chuàng)新意識(shí)常常體現(xiàn)在一些奇思妙想中,有的.也許細(xì)稚,有的也許太“出格,”但這些卻是學(xué)生創(chuàng)新精思維的閃現(xiàn),必須珍惜,這樣才能培養(yǎng)出具有創(chuàng)新精神的時(shí)代新人。在今后的教學(xué)中把充足的探究時(shí)間與空間交給學(xué)生,改變以教師為主體的傳統(tǒng)觀念,以學(xué)生為主體,教師為主導(dǎo),讓學(xué)生成為課堂的真正主人。

圓柱的體積教學(xué)反思14

  本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因?yàn)楣降耐茖?dǎo)過程是個(gè)難點(diǎn),因此在教學(xué)設(shè)計(jì)時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),幫助學(xué)生理解公式的來(lái)源,從而獲得知識(shí)。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>

  一、在教學(xué)過程的設(shè)計(jì)方面

  1、導(dǎo)入時(shí),力求突破教材,有所創(chuàng)新

  圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來(lái)計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。于是我設(shè)計(jì)時(shí)不妨在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時(shí)間的控制,不能花費(fèi)太多的時(shí)間。

  2、新課時(shí),要實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí)

  學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營(yíng)造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時(shí),我讓學(xué)生經(jīng)歷先想—觀察—?jiǎng)邮植僮鞯倪^程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來(lái),圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著讓學(xué)生小組交流長(zhǎng)方體的長(zhǎng)和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),,也有了充分的思考空間。這樣設(shè)計(jì)我覺得能突破難點(diǎn),課堂效果很好。

  3、練習(xí)時(shí),形式多樣,層層遞進(jìn)

  例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無(wú)策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,我在設(shè)計(jì)練習(xí)時(shí)動(dòng)了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。通過反思,我概括出五種類型:

  a.已知圓柱底面積(s)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh。

  b.已知圓柱底面半徑(r)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πrh。

  c.已知圓柱底面直徑(d)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2)h。

  d.已知圓柱底面周長(zhǎng)(c)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)h、

  e.已知圓柱側(cè)面積(s側(cè))和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)h。

  因?yàn)槭堑谝徽n時(shí)所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計(jì)算圓柱體積的方法。另外,還設(shè)計(jì)了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。

  二、在教學(xué)策略方面

  我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時(shí)間的優(yōu)點(diǎn)。

  三、在教學(xué)技能方面

  學(xué)生通過實(shí)踐、探索、發(fā)現(xiàn),得到的'知識(shí)是“活”的,這樣的知識(shí)對(duì)學(xué)生自身智力和創(chuàng)造力發(fā)展會(huì)起到積極的推動(dòng)作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來(lái)的,這樣的知識(shí)具有個(gè)人意義,理解更深刻。但是我覺得這個(gè)引導(dǎo)的過程需要教師有認(rèn)真準(zhǔn)備,隨時(shí)能解決課堂上可能出現(xiàn)的一些問題。

  傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識(shí),把學(xué)生當(dāng)成知識(shí)的“容器”。學(xué)生的學(xué)習(xí)只是被動(dòng)地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景,

  四、存在的問題

  不足之處是:由于這節(jié)課的設(shè)計(jì)是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動(dòng)手實(shí)踐、交流討論和思考的時(shí)間上教師應(yīng)合理把握,不能時(shí)間較多,否則會(huì)導(dǎo)致練習(xí)的時(shí)間較少。

  另外,在練習(xí)設(shè)計(jì)上,題形雖然全,但覺得題量偏多,因?yàn)檫@部分練習(xí)涉及的計(jì)算多、難,這樣練習(xí)題還需精心設(shè)計(jì)。

圓柱的體積教學(xué)反思15

  《圓柱的體積》一課是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計(jì)算”和“長(zhǎng)方體、正方體的體積”及圓柱的相關(guān)知識(shí)的基礎(chǔ)上教學(xué)的。

  教學(xué)時(shí)我注重引導(dǎo)學(xué)生經(jīng)歷“類比猜想 驗(yàn)證說明”的探索過程。由于圓柱和長(zhǎng)方體都是直柱體,長(zhǎng)方體的體積是底面積×高,因而我引導(dǎo)學(xué)生猜想圓柱的體積是否也可以用底面積×高來(lái)計(jì)算。接著引導(dǎo)學(xué)生想辦法證明自己的猜想,也就是驗(yàn)證說明。重視學(xué)生已有的經(jīng)驗(yàn),是新課改教學(xué)的重要理念,因而我引導(dǎo)學(xué)生回憶以前學(xué)習(xí)的“把未知的問題轉(zhuǎn)化為已知的問題”的方法,即“怎樣把圓柱轉(zhuǎn)化成已知的形體”的問題。大部分學(xué)生都能想到把“圓柱轉(zhuǎn)化成長(zhǎng)方體”,接著就“怎樣將圓柱轉(zhuǎn)化成長(zhǎng)方體”這個(gè)問題,讓他們觀察、研究、討論。學(xué)生受到以前“圓的面積”推導(dǎo)過程的啟發(fā),都知道應(yīng)把圓柱平均分成若干份切開,拼成近似的`長(zhǎng)方體。由于學(xué)生沒有學(xué)具,因此我用教具演示整個(gè)過程,然后引導(dǎo)學(xué)生思考:長(zhǎng)方體底面的長(zhǎng)相當(dāng)于圓柱底面的什么?(周長(zhǎng)的一半即π r)長(zhǎng)方體底面的寬相當(dāng)于圓柱底面的什么?(圓的半徑r)再根據(jù)長(zhǎng)方體的面積公式推導(dǎo)出圓柱體積公式V=π r2 × h或V=S×h。這樣讓學(xué)生親身經(jīng)歷知識(shí)的形成過程,為學(xué)生的主動(dòng)探索與發(fā)現(xiàn)提供了空間。

  我覺得本課比較成功的一點(diǎn)是學(xué)生除了掌握本課的知識(shí)點(diǎn)外,還懂得了“類比猜想 驗(yàn)證說明”的數(shù)學(xué)思想方法,可以說是既授之于“魚”,又授之于“漁”。

【圓柱的體積教學(xué)反思】相關(guān)文章:

《圓柱的體積》教學(xué)反思06-25

圓柱的體積教學(xué)反思07-02

圓柱的體積教學(xué)反思09-03

《圓柱的體積》教學(xué)反思11-02

《圓柱的體積》教學(xué)反思(15篇)10-13

圓柱的體積教學(xué)反思 15篇07-30

圓柱的體積教學(xué)反思(精選15篇)06-01

《圓柱的體積》教學(xué)反思15篇10-10

圓柱的體積教學(xué)反思15篇11-16